Skip to main content
Log in

Expansion of a multicomponent current-carrying plasma jet into vacuum

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z 1= +1 and Z 2= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m 1/m 2 = 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Byon and A. Anders, J. Appl. Phys. 93, 1899 (2003).

    Article  ADS  Google Scholar 

  2. M. M. M. Bilek, M. Chhowalla, and W. I. Milne, Appl. Phys. Lett. 71, 1777 (1997).

    Article  ADS  Google Scholar 

  3. H. Barshilia, M. Prakash, A. Jain, and K. S. Rajam, Vacuum 77, 169 (2005).

    Article  ADS  Google Scholar 

  4. J. Hermann, S. Hofmann, and W. Munz, Thin Solid Films 153, 45 (1987).

    Article  Google Scholar 

  5. V. P. Smirnov, A. A. Samokhin, N. A. Vorona, and A. V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013).

    Article  ADS  Google Scholar 

  6. A. Litvak, S. Agnew, and F. Anderegg, in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, ECA 27A, O-1.6A (2003).

    Google Scholar 

  7. T. Ohkawa and R. Miller, Phys. Plasmas 9, 5116 (2002).

    Article  ADS  Google Scholar 

  8. A. J. Fetterman and N. J. Fisch, Phys. Plasmas 18, 094503 (2011).

    Article  ADS  Google Scholar 

  9. N. N. Antonov, N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, V. P. Smirnov, Tech. Phys. 61, 180 (2016).

    Article  Google Scholar 

  10. V. L. Paperny, V. I. Krasov, and N. V. Lebedev, Plasma Sources Sci. Technol. 20, 035005 (2011).

    Article  ADS  Google Scholar 

  11. I. A. Krinberg, Tech. Phys. 46, 1371 (2001).

    Article  Google Scholar 

  12. D. L. Shmelev, S. A. Barengolts, and N. N. Shchitov, Tech. Phys. Lett. 40, 783 (2014).

    Article  ADS  Google Scholar 

  13. G. Y. Yushkov, A. Anders, E. M. Oks, and I. G. Brown, J. Appl. Phys. 88, 5618 (2000).

    Article  ADS  Google Scholar 

  14. A. S. Bugaev, V. I. Gushenets, A. G. Nikolaev, E. M. Oks, and G. Yu. Yushkov, Tech. Phys. 45, 1135 (2000).

    Article  Google Scholar 

  15. A. Anders and E. Oks, Preprint No. LBNL-59789 (Lawrence Berkeley National Laboratory, Berkeley, CA, 2006). http://escholarship.org/uc/item/54t0f7t2.

    Google Scholar 

  16. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

  17. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962).

    MATH  Google Scholar 

  18. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 105.

  19. G. A. Mesyats, Ectons in Vacuum Discharges: Breakdown, Spark, and Arc (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  20. I. A. Krinberg, M. P. Lukovnikova, and V. L. Papernyi, Sov. Phys. JETP 70, 451 (1990).

    Google Scholar 

  21. C. Wieckert, Contrib. Plasma Phys. 27, 309 (1987).

    Google Scholar 

  22. N. A. Bobrova, E. Lazzaro, and P. V. Sasorov, Phys. Plasmas 12, 022105 (2005).

    Article  ADS  Google Scholar 

  23. E. Hantzsche, IEEE Trans. Plasma Sci. 23, 893 (1995).

    Article  ADS  Google Scholar 

  24. J. Rosen, J. M. Schneider, and A. Anders, Appl. Phys. Lett. 89, 141502 (2006).

    Article  ADS  Google Scholar 

  25. K. Tanaka, L. Han, Xue Zhou, and A. Anders, Plasma Sources Sci. Technol. 24, 045010 (2015).

    Article  ADS  Google Scholar 

  26. I. Beilis, IEEE Trans. Plasma Sci. 33, 1537 (2005).

    Article  ADS  Google Scholar 

  27. Yu. V. Medvedev, Phys. Scr. 69, 120 (2004).

    Article  ADS  Google Scholar 

  28. V. P. Borzenko, O. L. Volkov, V. I. Krasov, I. A. Krinberg, V. L. Papernyi, and V. G. Simonov, Sov. J. Plasma Phys. 17, 212 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Paperny.

Additional information

Original Russian Text © V.I. Krasov, V.L. Paperny, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 3, pp. 241–249.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasov, V.I., Paperny, V.L. Expansion of a multicomponent current-carrying plasma jet into vacuum. Plasma Phys. Rep. 43, 298–306 (2017). https://doi.org/10.1134/S1063780X17030072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17030072

Navigation