Skip to main content
Log in

Simulation of the development and interaction of instabilities in a relativistic electron beam under variation of the beam wall thickness

  • Beams in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Benford, J. A. Swegle, and E. Schamiloglu, High-Power Microwaves (CRC Press, Boca Raton, 2007).

    Google Scholar 

  2. R. E. Collin, Foundations for Microwave Engineering (Wiley, Hoboken, NJ, 2001).

    Book  Google Scholar 

  3. R. J. Barker and E. Schamiloglu, High-Power Microwave Sources and Technologies (IEEE Press, New York, 2001).

    Book  Google Scholar 

  4. D. I. Trubetskov and A. E. Hramov, Lectures on Microwave Electronics for Physicists (Fizmatlit, Moscow, 2003, 2004), Vols. 1, 2 [in Russian].

    Google Scholar 

  5. R. J. Barker, J. H. Booske, N. C. Luhmann, and G. S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (Wiley, New York, 2005).

    Book  Google Scholar 

  6. A. A. Koronovskii, D. I. Trubetskov, and A. E. Hramov, Methods of Nonlinear Dynamics and Chaos in Problems of Microwave Electronics, Vol. 2: Nonstationary and Chaotic Processes (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  7. A. M. Ignatov and V. P. Tarakanov, Phys. Plasmas 1, 741 (1994).

    Article  ADS  Google Scholar 

  8. H. S. Uhm, J. Applied Phys. 56, 2041 (1984).

    Article  ADS  Google Scholar 

  9. T. Klinger, C. Schroder, D. Block, F. Greiner, A. Piel, G. Bonhomme, and V. Naulin, Phys. Plasmas 8, 1961 (2001).

    Article  ADS  Google Scholar 

  10. Yu. P. Bliokh, G. S. Nusinovich, J. Felsteiner, and V. L. Granatstein, Phys. Rev. E 66, 056503 (2002).

    Article  ADS  Google Scholar 

  11. A. A. Koronovskii and A. E. Hramov, Plasma Phys. Rep. 28, 666 (2202).

  12. R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, New York, 1974).

    Google Scholar 

  13. R. B. Miller, Introduction to the Physics of Intense Charged Particle Beams (Plenum, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  14. M. V. Nezlin, Physics of Intense Beams in Plasmas (Boca Raton, CRC Press, 1993).

    Google Scholar 

  15. R. C. Davidson, Physics of Nonneutral Plasmas (Imperial College Press/World Scientific, London, 2001).

    Book  Google Scholar 

  16. R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, Singapore, 2001).

    Book  Google Scholar 

  17. M. V. Kuzelev and N. Sepekhri Javan, Plasma Phys. Rep. 33, 672 (2007).

    Article  ADS  Google Scholar 

  18. G. Shvets, O. Polomarov, V. Khudik, C. Siemon, and I. Kaganovich, Phys. Plasmas 16, 056303 (2009).

    Article  ADS  Google Scholar 

  19. V. R. Bursian and V. I. Pavlov, Zh. Russ. Fiz.−Khim. Obshch. 55, 71 (1923).

    Google Scholar 

  20. L. S. Bogdankevich and A. A. Rukhadze, Sov. Phys. Usp. 14, 163 (1971).

    Article  ADS  Google Scholar 

  21. L. Thode, B. B. Godfrey, and W. R. Shanahan, Phys. Fluids 22, 747 (1979).

    Article  ADS  Google Scholar 

  22. V. I. Kuznetsov and A. Ya. Ender, Plasma Phys. Rep. 36, 226 (2010).

    Article  ADS  Google Scholar 

  23. V. I. Kuznetsov and A. Ya. Ender, Plasma Phys. Rep. 36, 236 (2010).

    Article  ADS  Google Scholar 

  24. R. A. Mahaffey, P. A. Sprangle, J. Golden, and C. A. Kapetanakos, Phys. Rev. Lett. 39, 843 (1977).

    Article  ADS  Google Scholar 

  25. A. N. Didenko, Ya. E. Krasik, S. F. Perelygin, and G. P. Fomenko, Sov. Tech. Phys. Lett. 5, 128 (1979).

    Google Scholar 

  26. D. J. Sullivan, J. E. Walsh, and E. A. Coutsias, in High-Power Microwave Sources (Artech House Microwave Library), Ed. by V. L. Granatstein and I. Alexeff (Artech House, Boston, 1987), p. 441.

  27. A. E. Dubinov and V. D. Selemir, J. Comm. Technol. Electron. 47, 575 (2002).

    Google Scholar 

  28. Yu. A. Kalinin and A. E. Hramov, Tech. Phys. 51, 558 (2006).

    Article  Google Scholar 

  29. A. S. Shlapakovski, T. Queller, Yu. P. Bliokh, and Ya. E. Krasik, IEEE Trans. Plasma Sci. 40, 1607 (2012).

    Article  ADS  Google Scholar 

  30. A. E. Dubinov, I. A. Efimova, K. E. Mikheev, V. D. Selemir, and V. P. Tarakanov, Plasma Phys. Rep. 30, 496 (2004).

    Article  ADS  Google Scholar 

  31. A. E. Hramov, A. A. Koronovsky, S. A. Kurkin, and I. S. Rempen, Int. J. Electron. 98, 1549 (2011).

    Article  Google Scholar 

  32. S. A. Kurkin, N. S. Frolov, A. O. Rak, A. A. Koronovskii, A. A. Kurayev, and A. E. Hramov, Appl. Phys. Lett. 106, 1 (2015).

    Article  Google Scholar 

  33. J. Ju, D. Cai, G. Du, Y. Wang, L. Liu, and J. Zhang, IEEE Trans. Plasma Sci. 43, 3522 (2015).

    Article  ADS  Google Scholar 

  34. A. L. Peratt and C. M. Snell, Phys. Rev. Lett. 54, 1167 (1985).

    Article  ADS  Google Scholar 

  35. C. C. Cutler, J. Appl. Phys. 27, 1028 (1956).

    Article  ADS  Google Scholar 

  36. R. L. Kyhl and H. R. Webster, IRE Trans. Electron. Dev. 3, 172 (1956).

    Article  ADS  Google Scholar 

  37. H. F. Webster, J. Appl. Phys. 28, 1388 (1957).

    Article  ADS  Google Scholar 

  38. I. N. Kartashov and M. V. Kuzelev, Plasma Phys. Rep. 36, 524 (2010).

    Article  ADS  Google Scholar 

  39. V. V. Mikhailenko, J. S. Kim, Y. H. Jo, V. S. Mikhailenko, and H. J. Lee, Phys. Plasmas 21, 052105 (2014).

    Article  ADS  Google Scholar 

  40. J. A. Rome and R. J. Briggs, Phys. Fluids 15, 796 (1972).

    Article  ADS  Google Scholar 

  41. C. A. Kapetanakos, D. A. Hammer, C. D. Striffler, and R. C. Davidson, Phys. Rev. Lett. 30, 1303 (1973).

    Article  ADS  Google Scholar 

  42. M. A. Mostrom and M. E. Jones, Phys. Fluids 26, 1649 (1983).

    Article  ADS  Google Scholar 

  43. Y. Carmel and J. A. Nation, Phys. Rev. Lett. 31, 286 (1973).

    Article  ADS  Google Scholar 

  44. V. V. Mikhailenko, H. J. Lee, V. S. Mikhailenko, and N. A. Azarenkov, Phys. Plasmas 20, 042101 (2013).

    Article  ADS  Google Scholar 

  45. S. A. Kurkin, A. A. Badarin, A. A. Koronovskii, and A. E. Hramov, Phys. Plasmas 22, 122110 (2015).

    Article  ADS  Google Scholar 

  46. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (Taylor & Francis, New York, 2005).

    Google Scholar 

  47. S. A. Kurkin, A. A. Koronovskii, A. E. Hramov, and A. O. Rak, in Proceedings of the 15th IEEE International Vacuum Electronics Conference, Monterey, CA, 2014, p. 389.

    Google Scholar 

  48. M. Einat, M. Pilossof, R. Ben-Moshe, H. Hirshbein, and D. Borodin, Phys. Rev. Lett. 109, 185101 (2012).

    Article  ADS  Google Scholar 

  49. M. C. Balk, in Proceedings of the 9th IEEE International Vacuum Electronics Conference, Monterey, CA, 2008, p. 459.

    Google Scholar 

  50. S. A. Kurkin, A. E. Hramov, and A. A. Koronovskii, Appl. Phys. Lett. 103, 043507 (2013).

    Article  ADS  Google Scholar 

  51. S. A. Kurkin, A. A. Badarin, A. A. Koronovskii, and A. E. Hramov, Phys. Plasmas 21, 093105 (2014).

    Article  ADS  Google Scholar 

  52. A. E. Hramov, S. A. Kurkin, A. A. Koronovskii, and A. E. Filatova, Phys. Plasmas 19, 112101 (2012).

    Article  ADS  Google Scholar 

  53. S. E. Tsimring, Electron Beams and Microwave Vacuum Electronics (Wiley, Hoboken, NJ, 2007).

    Google Scholar 

  54. D. Biswas, Phys. Plasmas 16, 063104 (2009).

    Article  ADS  Google Scholar 

  55. R. A. Filatov, A. E. Hramov, Y. P. Bliokh, A. A. Koronovskii, and J. Felsteiner, Phys. Plasmas 16, 033106 (2009).

    Article  ADS  Google Scholar 

  56. G. Singh and S. Chaturvedi, Phys. Plasmas 18, 063104 (2011).

    Article  ADS  Google Scholar 

  57. S. A. Kurkin, A. A. Koronovskii, and A. E. Hramov, Tech. Phys. Lett. 37, 356 (2011).

    Article  ADS  Google Scholar 

  58. S. A. Kurkin, A. E. Hramov, and A. A. Koronovskii, Tech. Phys. Lett. 37, 144 (2011).

    Article  ADS  Google Scholar 

  59. N. S. Phrolov, A. A. Koronovskii, Yu. A. Kalinin, S. A. Kurkin, and A. E. Hramov, Phys. Lett. A 378, 2423 (2014).

    Article  ADS  Google Scholar 

  60. A. A. Badarin, S. A. Kurkin, and A. E. Hramov, Bull. Russ. Acad. Sci., Physics 79, 1439 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Hramov.

Additional information

Original Russian Text © A.A. Badarin, S.A. Kurkin, A.A. Koronovskii, A.O. Rak, A.E. Hramov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 3, pp. 284–292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badarin, A.A., Kurkin, S.A., Koronovskii, A.A. et al. Simulation of the development and interaction of instabilities in a relativistic electron beam under variation of the beam wall thickness. Plasma Phys. Rep. 43, 346–353 (2017). https://doi.org/10.1134/S1063780X17030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17030047

Navigation