Skip to main content
Log in

High-frequency underwater plasma discharge application in antibacterial activity

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Hong, H. J. Park, B. J. Lee, W. S. Kang, and H. S. Uhm, Phys. Plasmas 17, 053501 (2010).

    Article  ADS  Google Scholar 

  2. R. Zhang, L. Wang, Y. Wu, Z. Guan, and Z. Jia, IEEE Trans. Plasma Sci. 34, 1370 (2006).

    Article  ADS  Google Scholar 

  3. C. H. Wang, Y. Wu, and G. F. Li, J. Electrostat. 66, 71 (2008).

    Article  Google Scholar 

  4. D. Ziuzina, S. Patil, P. J. Cullen, K. M. Keener, and P. Bourke, J. Appl. Microbiol. 114, 778 (2013).

    Article  Google Scholar 

  5. P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, and M. Cernak, Plasma Sources Sci. Technol. 8, 258 (1999).

    Article  ADS  Google Scholar 

  6. I. Z. Kozakova, Ph. D. Thesis (Brno University of Technology, Brno, 2011).

    Google Scholar 

  7. M. Sato, Int. J. Plasma Environ. Sci. Technol. 3, 8 (2009).

    Google Scholar 

  8. S. H. R. Hosseini, S. Iwasaki, T. Sakugawa, and H. Akiyama, J. Korean Phys. Soc. 59, 3526 (2011).

    Article  Google Scholar 

  9. M. W. Ahmed, J. K. Yang, Y. S. Mok, and H. J. Lee, J. Korean Phys. Soc. 65, 1404 (2014).

    Article  ADS  Google Scholar 

  10. T. Izdebski, M. Dors, and J. Mizeraczyk, Eur. Chem. Bull. 3, 811 (2014).

    Google Scholar 

  11. B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D 20, 142 (1987).

    Article  Google Scholar 

  12. R. Munter, Proc. Estonian Acad. Sci. Chem. 50, 59 (2001).

    Google Scholar 

  13. T. Sakoda, Y. Matsuda, and S. Baba, J. Plasma Fusion Res. SERIES 8, 623 (2009).

    Google Scholar 

  14. S. Pekarek, Acta Polytech. 43, 47 (2003).

    Google Scholar 

  15. A. Yamatake, H. Katayama, K. Yasuoka, and S. Ishii, Int. J. Plasma Environ. Sci. Technol. 1, 91 (2007).

    Google Scholar 

  16. M. Magureanu, C. Bradu, D. Piroi, N. B. Mandache, and V. Parvulescu, Plasma Chem. Plasma Proc. 33, 51 (2013).

    Article  Google Scholar 

  17. B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, and J. S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006).

    Article  Google Scholar 

  18. P. Lukes, M. Clupek, V. Babicky, V. Janda, and P. Sunka, J. Phys. D 38, 409 (2005).

    Article  ADS  Google Scholar 

  19. J.-T. Marois-Fiset, A. Carabin, A. Lavoie, and C. C. Dorea, Appl. Environ. Microbiol. 79, 2107 (2013).

    Article  Google Scholar 

  20. R. P. Joshi and S. M. Thagard. Plasma Chem. Plasma Process. 33, 1 (2013).

    Article  Google Scholar 

  21. S. J. Kim, T. H. Chung, S. H. Bae, and S. H. Leem, Plasma Process. Polym. 6, 676 (2009).

    Article  Google Scholar 

  22. M. Pekker and M. N. Shneider, J. Phys. D 48, 424009 (2015).

    Article  ADS  Google Scholar 

  23. S. Reuter, J. Winter, S.Iseni, A. S. Bleker, M. Dunnbier, K. Masur, K. Wende, and K. D. Weltmann, IEEE Trans. Plasma Sci. 43, 3185 (2015).

    Article  ADS  Google Scholar 

  24. S. Wani, J. K. Maker, J. R. Thompson, J. Barnes, and I. Singleton, Agriculture 5, 155 (2015).

    Article  Google Scholar 

  25. A. P. Schuch, R. da S. Galhardo, K. M. de L. Bessa, N. J. Schuch, and C. F. M. Menck, Photochem. Photobiol. Sci. 8, 111 (2009).

    Article  Google Scholar 

  26. R. P. Sinha, M. Dautz, and D. P. Hader, Acta Protozool. 40, 187 (2001).

    Google Scholar 

  27. M. Davoudi, T. Vakili, A. Absalan, M. H. Ehrampoushand, and M. T. Ghaneian, Middle-East J. Sci. Res. 13, 710 (2013).

    Google Scholar 

  28. P. Belenky, J. D. Ye, C. B. M. Porter, N. R. Cohen, M. A. Lobritz, T. Ferrante, S. Jain, B. J. Korry, E. G. Schwarz, G. C. Walker, and J. J. Collins, Cell Rep. 13, 1 (2015).

    Article  Google Scholar 

  29. Oxygen Radicals in Biology and Medicine, Ed. by M. G. Simic, K. A. Taylor, J. F. Word, and C. von Sonntag (Plenium, New York, 1998).

  30. B. A. Hamkalo and P. A. Swenson, J. Bacteriol. 99, 815 (1969).

    Google Scholar 

  31. H. Zuckerman, Y. E. Krasik, and J. Felsteiner, Innov. Food Sci. Emerg. Technol. 3, 3329 (2002).

    Article  Google Scholar 

  32. S. V. Gudkov, O. E. Karp, S. A. Garmash, V. E. Ivanov, A. V. Chernikov, A. A. Manokhin, M. E. Astashev, L. S. Yaguzhinsky, and V. I. Bruskov, Mol. Biophys. 57, 1 (2012).

    Article  Google Scholar 

  33. U. V. Gunten, Water Res. 37, 1443 (2003).

    Article  Google Scholar 

  34. B. G. Kwon and J. H. Lee, Bull. Korean Chem. Soc. 27, 1785 (2006).

    Article  Google Scholar 

  35. S. K. Dey, D. Banerjee, S. Chattapadhyay, and K. B. Karmakar, Int. J. Plasma Bio. Sci. 1 (3), 1 (2010).

    Google Scholar 

  36. E. Jeronsia, J. A. Joseph, and J. Das, Indian J. Dental Res. 5, 5707 (2015).

    Google Scholar 

  37. P. G. Mazzola, A. F. Jozala, L. C. de L. Novaes, P. Moriel, and T. C. V. Penna, Braz. J. Pharm. Sci. 45, 241 (2009).

    Article  Google Scholar 

  38. J. K. Kim, N. Kim, and Y. H. Lim, J. Microbiol. Biotechnol. 20, 82 (2010).

    Google Scholar 

  39. R. Zhang, L. Wang, Y. Wu, Z. Guan, and Z. Jia, IEEE Trans. Plasma Sci. 34, 1370 (2006).

    Article  ADS  Google Scholar 

  40. Y. C. Hong, H. J. Park, B. J. Lee, W. S. Kang, and H. S. Uhm, Phys. Plasmas. 17, 053502 (2010).

    Article  ADS  Google Scholar 

  41. O. Zajic, in Proceedings of the Fourth International Water Technology Conference, Alexandria, 1999, p. 415.

    Google Scholar 

  42. I. V. Timoshkin, M. J. Given, M. P. Wilson, T. Wang, S. J. MacGregor, and N. Bonifaci, in Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerpen, 2015, Paper P-I-3-32.

    Google Scholar 

  43. J. M. Palomares, S. Hübner, E. A. D. Carbone, N. deVries, E. M. van Veldhuizen, A. Sola, A. Gamero, and J. J. A. M. van den Mullen, J. Phys. D 40, 5936 (2007).

    Google Scholar 

  44. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

    Google Scholar 

  45. W. L. Wiese, D. E. Kelleher, and D. R. Paquette, Phys. Rev. A 6, 1132 (1972).

    Article  ADS  Google Scholar 

  46. T. Shirafuji, T. Morita, O. Sakai, and K. Tachibana, in Proceedings of the 19th International Symposium on Plasma Chemistry, Bochum, 2009, Vol. 3, Paper P2.2.52.

    Google Scholar 

  47. J. Zhang, J. Chen, and X. Li, J. Water Resource Protect. 2, 99 (2009).

    Article  Google Scholar 

  48. G. Eisenberg, Ind. Eng. Chem. Anal. Ed. 15, 327 (1943).

    Article  Google Scholar 

  49. H. Bader, J. Hoigne, Water Res. 15, 449 (1981).

    Article  Google Scholar 

  50. J. M. Montgomery, Water Treatment Principles and Design (Wiley, New York, 1985).

    Google Scholar 

  51. http://technologyinscience.blogspot.kr.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Lee.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.W., Choi, S., Lyakhov, K. et al. High-frequency underwater plasma discharge application in antibacterial activity. Plasma Phys. Rep. 43, 381–392 (2017). https://doi.org/10.1134/S1063780X17030011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17030011

Navigation