Skip to main content
Log in

Nonlinear relativistic plasma resonance: Renormalization group approach

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Denisov, Sov. Phys. Sov. Phys. JETP 4, 544 (1957).

    Google Scholar 

  2. B. N. Gershman, V. L. Ginzburg, and N. G. Denisov, Usp. Fiz. Nauk 61, 561 (1957).

    Article  Google Scholar 

  3. A. D. Piliya, Sov. Phys. Tech. Phys. 11, 609 (1966).

    Google Scholar 

  4. T. A. Davydova, Sov. J. Plasma Phys. 7, 507 (1981).

    Google Scholar 

  5. D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, and R. L. Morse, Phys. Rev. A 11, 679 (1975).

    Article  ADS  Google Scholar 

  6. G. J. Pert, Plasma Phys. 20, 175 (1978).

    Article  ADS  Google Scholar 

  7. N. S. Erokhin, V. K. Zakharov, and S. S. Moiseev, Sov. Phys. JETP 29, 101 (1969).

    ADS  Google Scholar 

  8. A. B. Vladimirskii and V. P. Silin, Sov. J. Plasma Phys. 6, 196 (1980).

    ADS  Google Scholar 

  9. N. S. Erochin, S. S. Moiseev, and V. V. Mukhin, Nucl. Fusion 14, 333 (1974).

    Article  Google Scholar 

  10. N. P. Trotsenko, Candidate’s Dissertation in Physics and Mathematics (Moscow, 1983).

    Google Scholar 

  11. J. Albritton and P. Koch, Phys. Fluids 18, 1136 (1975).

    Article  ADS  Google Scholar 

  12. S. V. Bulanov, L. M. Kovrizhnykh, and A. S. Sakharov, Sov. Phys. JETP 45, 949 (1977).

    ADS  Google Scholar 

  13. A. Y. Lee, Y. Nishida, N. C. Lundmann, S. P. Obenschain, B. Gu, and M. Rhodes, Phys. Rev. Lett. 48, 319 (1982).

    Article  ADS  Google Scholar 

  14. V. F. Kovalev and V. V. Pustovalov, Teor. Mat. Fiz. 81, 69 (1989).

    Article  Google Scholar 

  15. S. V. Bulanov, N. M. Naumova, and F. Pegoraro, Phys. Plasmas 1, 745 (1994).

    Article  ADS  Google Scholar 

  16. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, A. S. Pirozhkov, and N. N. Rozanov, Phys. Usp. 56, 429 (2013).

    Article  ADS  Google Scholar 

  17. A. I. Akhiezer and G. Ya. Lyubarskii, Dokl. Akad. Nauk SSSR 80, 193 (1951).

    Google Scholar 

  18. J. M. Dawson, Phys. Rev. 113, 383 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  19. T. P. Coffey, Phys. Fluids 14, 1402 (1971).

    Article  ADS  Google Scholar 

  20. V. F. Kovalev and D. V. Shirkov, Phys. Usp. 51, 815 (2008).

    Article  ADS  Google Scholar 

  21. M. B. Isichenko and V. V. Yan’kov, JETP Lett. 37, 351 (1983).

    ADS  Google Scholar 

  22. M. B. Isichenko and V. V. Yan’kov, Zh. Eksp. Teor. Fiz. 87, 1914 (1984) [Sov. Phys. JETP 60, 1101 (1984)].

    ADS  Google Scholar 

  23. J. F. Drake, Y. C. Lee, K. Nishikawa, and N. L. Tsintsadze, Phys. Rev. Lett. 36, 196 (1976).

    Article  ADS  Google Scholar 

  24. W.-J. Ding, Z.-M. Sheng, J. Zhang, and M. Y. Yu, Phys. Plasmas 16, 042315 (2009).

    Article  ADS  Google Scholar 

  25. S. V. Milyutin, A. A. Frolov, and E. V. Chizhonkov, Vychisl. Metody Program. 14, 295 (2013).

    Google Scholar 

  26. A. A. Frolov and E. V. Chizhonkov, Vychisl. Metody Program. 15, 537 (2014).

    Google Scholar 

  27. S. V. Bulanov and L. M. Kovrizhnykh, Sov. J. Plasma Phys. 2, 58 (1976).

    ADS  Google Scholar 

  28. S. K. Rajouria, K. K. Magesh Kumar, and V. K. Tripathi, Phys. Plasmas 20, 083112 (2013).

    Article  ADS  Google Scholar 

  29. A. M. Zhuravskii, Handbook of Elliptic Functions (Izd. Akad. Nauk SSSR, Moscow, 1941) [in Russian].

    Google Scholar 

  30. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Nauka, Moscow, 1981; Gordon & Breach, New York, 1986), Vol. 1.

    MATH  Google Scholar 

  31. P. Appel’, Theoretical Mechanics (Fizmatlit, Moscow, 1960), Vol. 1 [in Russian].

    Google Scholar 

  32. A. A. Kharkevich, Fundamentals of Radio Engineering (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  33. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Metelskii.

Additional information

Original Russian Text © I.I. Metelskii, V.F. Kovalev, V.Yu. Bychenkov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 2, pp. 169–186.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metelskii, I.I., Kovalev, V.F. & Bychenkov, V.Y. Nonlinear relativistic plasma resonance: Renormalization group approach. Plasma Phys. Rep. 43, 175–190 (2017). https://doi.org/10.1134/S1063780X1702009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1702009X

Navigation