Skip to main content
Log in

Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter

  • Plasma and Ion Sources
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surface that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Zharinov and Yu. A. Kovalenko, Izv. Vyssh. Uchebn. Zaved., Fizika 44 (9), 44 (2001).

    Google Scholar 

  2. A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, and P. M. Teryukanov, Zh. Tekh. Fiz. 56, 687 (1986) [Sov. Phys. Tech. Phys. 31, 413 (1986)].

    Google Scholar 

  3. I. A. Kotelnikov and V. T. Astrelin, Phys. Usp. 58, 701 (2015).

    Article  ADS  Google Scholar 

  4. A. Burdakov, A. Arzhannikov, V. Astrelin, V. Batkin, A. Beklemishev, V. Burmasov, G. Derevjankin, V. Ivanenko, I. Ivanov, M. Ivantsivskiy, I. Kandaurov, V. Konyukhov, I. Kotelnikov, K. Kuklin, S. Kuznetsov, et al., Fusion Sci. Technol. 55 (2T), 63 (2009).

    Google Scholar 

  5. A. A. Ivanov, A. V. Burdakov, and P. A. Bagryansky, Fusion Sci. Technol. 68, 56 (2015).

    Google Scholar 

  6. A. V. Sudnikov, A. V. Burdakov, D. E. Gavrilenko, I. V. Kandaurov, V. V. Kurkuchekov, K. I. Mekler, A. F. Rovenskikh, S. V. Polosatkin, V. V. Postupaev, and Yu. A. Trunev, Fusion Sci. Technol. 63 (1T), 250 (2013).

    Google Scholar 

  7. D. Bohm, Minimum Ionic Kinetic Energy for a Stable Sheath (McGraw Hill, New York, 1949), p. 77.

    Google Scholar 

  8. D. Bohm, P. H. E. Burhop, and H. S. M. Massey, in The Characteristics of Electrical Discharges in Magnetic Fields, Ed. by A. Guthrie and R. K. Wakerling (McGraw-Hill, New York, 1949), p. 360.

  9. V. Ya. Martens, Izv. Vyssh. Uchebn. Zaved., Fizika 44 (9), 90 (2001).

    Google Scholar 

  10. V. Ya. Martens, Tech. Phys. 41, 444 (1996).

    Google Scholar 

  11. I. Langmuir, Phys. Rev. 33, 954 (1929).

    Article  ADS  Google Scholar 

  12. J. E. Allen, J. Phys. D 9, 2331 (1976).

    Article  ADS  Google Scholar 

  13. R. H. Cohen and D. D. Ryutov, Contrib. Plasma Phys. 44, 111 (2004).

    Article  ADS  Google Scholar 

  14. www.wolfram.com

  15. A. T. Forrester, Large Ion Beams (Wiley, New York, 1988), p. 41.

    Google Scholar 

  16. V. P. Il’in, Numerical Methods for Solving Electrophysical Problems (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  17. V. Ya. Ivanov, Methods of Analysis, Optimization, and Synthesis of Physical Electronics Devices (Palmarium Academic, Saarbrücken, 2016) [in Russian].

    Google Scholar 

  18. V. T. Astrelin and V. Ya. Ivanov, Avtometriya 3, 92 (1980).

    Google Scholar 

  19. V. Astrelin, A. Burdakov, G. Derevyankin, V. Ivanov, I. Kandaurov, S. Sinitsky, and Yu. Trunev, in Proceedings of the 15th International Symposium on High-Current Electronics, Tomsk, 2008, p. 11.

    Google Scholar 

  20. V. T. Astrelin and I. V. Karpov, in Proceedings of the 4th International Kreindel Seminar “Plasma Emission Electronics,” Ulan-Ude, 2012, (Izd. BNTs SO RAN, Ulan-Ude, 2012), p. 74.

    Google Scholar 

  21. V. T. Astrelin, Usp. Prikl. Fiz. 1, 571 (2013).

    Google Scholar 

  22. V. T. Astrelin, I. V. Kandaurov, and Yu. A. Trunev, Tech. Phys. 59, 258 (2014).

    Article  Google Scholar 

  23. V. Davydenko, V. Amirov, A. Gorbovsky, P. Deichuli, A. Ivanov, A. Kolmogorov, V. Kapitonov, V. Mishagin, I. Shikhovtsev, A. Sorokin, N. Stupishin, A. N. Karpushov, A. Smirnov, and R. Uhlemann, Rev. Sci. Instrum. 87, 02B303 (2016).

    Article  Google Scholar 

  24. P. Deichuli, V. Davydenko, A. Ivanov, S. Korepanov, V. Mishagin, A. Smirnov, A. Sorokin, and N. Stupishin, Rev. Sci. Instrum. 86, 113509 (2015).

    Article  ADS  Google Scholar 

  25. A. V. Sorokin, V. I. Davydenko, P. P. Deichuli, and A. A. Ivanov, Tech. Phys. 61, 1004 (2016).

    Article  Google Scholar 

  26. N. N. Koval’, E. M. Oks, Yu. S. Protasov, and N. N. Semashko, Emission Electronics (Izd. MGTU im. N.E. Baumana, Moscow, 2009) [in Russian].

    Google Scholar 

  27. V. I. Davydenko, A. A. Ivanov, and G. I. Shul’zhenko, Plasma Phys. Rep. 41, 930 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Astrelin.

Additional information

Original Russian Text © V.T. Astrelin, I.A. Kotelnikov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 2, pp. 122–133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astrelin, V.T., Kotelnikov, I.A. Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter. Plasma Phys. Rep. 43, 129–140 (2017). https://doi.org/10.1134/S1063780X17020027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17020027

Navigation