Skip to main content
Log in

Propagation of microwave beams through the stagnation zone in an inhomogeneous plasma

  • Oscillations and Waves in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A study is made of the microwave beam evolution due to passing through the stagnation zone, where the group velocity vanishes, thus making the paraxial approximation for the wavefield inappropriate. An extension to the standard beam tracing technique is suggested that allows one to calculate the microwave beam parameters on either branch of its path apart from the stagnation zone, omitting the calculation of the wavefield inside it. Application examples of the extended technique are presented for the case of microwave reflection from the upper hybrid resonance layer in a tokamak plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Timofeev, Plasma Phys. Rep. 21, 610 (1995).

    ADS  Google Scholar 

  2. G. V. Pereverzev, Phys. Plasmas 5, 3529 (1998).

    Article  ADS  Google Scholar 

  3. E. Poli, A. G. Peeters, and G. V. Pereverzev, Comput. Phys. Commun. 136, 90 (2001).

    Article  ADS  Google Scholar 

  4. O. Maj, G. V. Pereverzev, and E. Poli, Phys. Plasmas 16, 062105 (2009).

    Article  ADS  Google Scholar 

  5. N. Bertelli, O. Maj, E. Poli, R. Harvey, J. C. Wright, P. T. Bonoli, C. K. Phillips, A. P. Smirnov, E. Valeo, and J. R. Wilson, Phys. Plasmas 19, 082510 (2012).

    Article  ADS  Google Scholar 

  6. S. Nowak and A. Orefice, Phys. Plasmas 1, 1242 (1994).

    Article  ADS  Google Scholar 

  7. G. V. Permitin and A. I. Smirnov, JETP 92, 10 (2001).

    Article  ADS  Google Scholar 

  8. A. A. Balakin, M. A. Balakina, G. V. Permitin, and A. I. Smirnov, Plasma Phys. Rep 34, 486 (2008).

    Article  ADS  Google Scholar 

  9. A. N. Saveliev, Plasma Phys. Controlled Fusion 51, 075004 (2009).

    Article  ADS  Google Scholar 

  10. O. Maj, A. A. Balakin, and E. Poli, Plasma Phys. Controlled Fusion 52, 085006 (2010).

    Article  ADS  Google Scholar 

  11. M. Tereshchenko, F. Castejón, S. Pavlov, and A. Cappa, Phys. Scr. 84, 025401 (2011).

    Article  ADS  Google Scholar 

  12. M. Tereshchenko, F. Castejón, and A. Cappa, Plasma Phys. Controlled Fusion 55, 115011 (2013).

    Article  ADS  Google Scholar 

  13. M. A. Tereshchenko, K. A. Sarksian, G. M. Batanov, A. S. Sakharov, R. Martin, F. Castejón, A. Fernandez, and A. Cappa, in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, ECA 27A, P-1.18 (2003).

    Google Scholar 

  14. M. Tereshchenko, F. Castejón, and A. Cappa, Informes Técnicos CIEMAT No. 1134 (CIEMAT, Madrid, 2008).

    Google Scholar 

  15. V. F. Andreev, A. A. Ivanov, N. V. Kasyanova, V. E. Lukash, S. Yu. Medvedev, A. V. Melnikov, A. D. Sadykov, A. V. Sushkov, D. Yu. Sychugov, and R. R. Khairutdinov, Probl. Atom. Sci. Technol., Ser. Thermonucl. Fusion 37 (3), 48 (2014).

    Article  Google Scholar 

  16. M. D. Tokman, E. Westerhof, and M. A. Gavrilova, Plasma Phys. Controlled Fusion 42, 91 (2000).

    Article  ADS  Google Scholar 

  17. D. G. Swanson, Plasma Waves (IOP, Bristol, 2003).

    Google Scholar 

  18. F. Castejón, A. Cappa, M. Tereshchenko, and A. Fernandez, Nucl. Fusion 48, 075011 (2008).

    Article  ADS  Google Scholar 

  19. F. Castejón and S. S. Pavlov, Phys. Plasmas 13, 072105 (2006).

    Article  ADS  Google Scholar 

  20. S. S. Pavlov, F. Castejón, A. Cappa, and M. Tereshchenko, Probl. Atom. Sci. Technol., Ser. Plasma Phys., No. 1, 69 (2009).

    Google Scholar 

  21. S. S. Pavlov, F. Castejón, and M. Tereshchenko, Probl. Atom. Sci. Technol., Ser. Plasma Phys., No. 1, 90 (2013).

    Google Scholar 

  22. F. Zhang, Matrix Theory: Basic Results and Techniques (Springer-Verlag, New York, 1999).

    Book  MATH  Google Scholar 

  23. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  24. S. Feng and H. G. Winful, Opt. Lett. 26, 485 (2001).

    Article  ADS  Google Scholar 

  25. V. P. Maslow and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (Nauka, Moscow, 1976; Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  26. A. Jaun, E. R. Tracy, and A. N. Kaufman, Plasma Phys. Controlled Fusion 49, 43 (2007).

    Article  ADS  Google Scholar 

  27. E. R. Tracy, A. J. Brizard, A. S. Richardson, and A. N. Kaufman, Ray Tracing and Beyond: Phase Space Methods in Plasma Wave Theory (Cambridge University Press, Cambridge, 2014).

    Book  Google Scholar 

  28. S. W. McDonald, Phys. Rep. 158, 337 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  29. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Fizmatlit, Moscow, 1980; Springer-Verlag, Berlin, 1990).

    Book  Google Scholar 

  30. A. V. Timofeev, Phys. Usp. 47, 555 (2004).

    Article  ADS  Google Scholar 

  31. D. Yu. Sychugov, Probl. Atom. Sci. Technol., Ser. Thermonucl. Fusion 31 (4), 85 (2008).

    Google Scholar 

  32. Yu. F. Baranov and V. I. Fedorov, Sov. J. Plasma Phys. 9, 391 (1983).

    Google Scholar 

  33. T. Maekawa, T. Kobayashi, S. Yamaguchi, K. Yoshinaga, H. Igami, M. Uchida, H. Tanaka, M. Asakawa, and Y. Terumichi, Phys. Rev. Lett. 86, 3783 (2001).

    Article  ADS  Google Scholar 

  34. V. F. Shevchenko, M. R. O’Brien, D. Taylor, A. N. Saveliev, and MAST team, Nucl. Fusion 50, 022004 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tereshchenko.

Additional information

Original Russian Text © M.A. Tereshchenko, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 1, pp. 9–20.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, M.A. Propagation of microwave beams through the stagnation zone in an inhomogeneous plasma. Plasma Phys. Rep. 43, 18–28 (2017). https://doi.org/10.1134/S1063780X17010123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17010123

Navigation