Skip to main content
Log in

Surfatron accelerator in the local interstellar cloud

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~107 GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E СН/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E СL/Z ≤ 3 × 106 GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E CL ~ 1017 eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 106 GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Loznikov, N. S. Erokhin, and L. A. Mikhailovskaya, Kosm. Issl. 51 (3), 191 (2013).

    Google Scholar 

  2. V. M. Loznikov, N. S. Erokhin, N. N. Zol’nikova, and L. A. Mikhailovskaya, Plasma Phys. Rep. 39, 829 (2013).

    Article  ADS  Google Scholar 

  3. V. M. Loznikov, N. S. Erokhin, N. N. Zol’nikova, and L. A. Mikhailovskaya, Plasma Phys. Rep. 41, 637 (2015).

    Article  ADS  Google Scholar 

  4. M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, K. Andeen, L. Arruda, N. Attig, P. Azzarello, A. Bachlechner, F. Barao, A. Barrau, L. Barrin, A. Bartoloni, L. Basara, et al., Phys. Rev. Lett. 113, 221102 (2014).

    Article  ADS  Google Scholar 

  5. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, et al., Science 332 (6025), 69 (2011).

    Article  ADS  Google Scholar 

  6. A. D. Panov, J. H. Adams, H. S. Ahn, G. L. Bashinzhagyan, J. W. Watts, J. P. Wefel, J. Wu, O. Ganel, T. G. Guzik, V. I. Zatsepin, I. Isbert, K. C. Kim, M. Christl, E. N. Kouznetsov, M. I. Panasyuk, et al., Bull. Russ. Acad. Sci., Ser. Physics 73, 564 (2009).

    Article  ADS  Google Scholar 

  7. W. Menn, M. Hof, O. Reimer, M. Simon, A. J. Davis, A. W. Labrador, R. A. Mewaldt, S. M. Schindler, L. M. Barbier, E. R. Christian, K. E. Krombel, J. F. Krizmanic, J. W. Mitchell, J. F. Ormes, R. E. Streitmatter, et al., Astrophys. J. 533, 281 (2000).

    Article  ADS  Google Scholar 

  8. M. Boezio, V. Bonvicini, P. Schiavon, A. Vacchi, N. Zampa, D. Bergstrom, P. Carlson, T. Francke, P. Hansen, E. Mocchiutti, M. Suffert, M. Hof, J. Kremer, W. Menn, M. Simon, et al., Astroparticle Phys. 19, 583 (2003).

    Article  ADS  Google Scholar 

  9. V. A. Derbina, V. I. Galkin, M. Hareyama, Y. Hirakawa, Y. Horiuchi, M. Ichimura, N. Inoue, E. Kamioka, T. Kobayashi, V. V. Kopenkin, S. Kuramata, A. K. Managadze, H. Matsutani, N. P. Misnikova, R. A. Mukhamedshin, et al., Astrophys. J. Lett. 628, 41 (2005).

    Article  ADS  Google Scholar 

  10. K. Asakimori, T. H. Burnett, M. L. Cherry, K. Chevli, M. J. Christ, S. Dake, J. H. Derrickson, W. F. Fountain, M. Fuki, J. C. Gregory, T. Hayashi, R. Holynski, J. Iwai, A. Iyono, J. Johnson, et al., Astrophys. J. 502, 278 (1998).

    Article  ADS  Google Scholar 

  11. M. Di Mauro, F. Donato, N. Fornengo, R. Lineros, and A. Vittino, http://xxx.lanl.gov/pdf/1402.0321v2.

  12. H. S. Ahn, P. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, J. T. Childers, N. B. Conklin, S. Coutu, M. A. Du Vernois, O. Ganel, J. H. Han, J. A. Jeon, K. C. Kim, M. H. Lee, L. Lutz, et al., Astrophys. J. Lett. 714 (2010).

    Google Scholar 

  13. Y. S. Yoon, H. S. Ahn, P. S. Allison, M. G. Bagliesi, J. J. Beatty, G. Bigongiari, P. J. Boyle, J. T. Childers, N. B. Conklin, S. Coutu, M. A. Du Vernois, O. Ganel, J. H. Han, J. A. Jeon, K. C. Kim, et al., Astrophys. J. 728, 122 (2011).

    Article  ADS  Google Scholar 

  14. M. Amenomori, S. Ayabe, Caidong, Danzengluobu, L. K. Ding, Z. Y. Feng, Y. Fu, H. W. Guo, M. He, K. Hibino, N. Hotta, Q. Huang, A. X. Huo, K. Izu, H. Y. Jia, et al., Phys. Rev. D 62, 112002 (2000).

    Article  ADS  Google Scholar 

  15. M. Amenomori, S. Ayabe, D. Chen, S. W. Cui, L. K. Ding, X. H. Ding, C. F. Feng, Z. Y. Feng, X. Y. Gao, Q. X. Geng, H. W. Guo, H. H. He, M. He, K. Hibino, et al., Phys. Lett. A 632, 58 (2006).

    Article  Google Scholar 

  16. M. Nagano, T. Hara, Y. Hatano, N. Hayashida, S. Kawaguchi, K. Kamata, T. Kifune, and Y. Mizumoto, J. Phys. G 10, 1295 (1984).

    Article  ADS  Google Scholar 

  17. S. P. Knurenko, Z. E. Petrov, R. Sidorov, I. Ye. Sleptsov, S. K. Starostin, and G. G. Struchkov, https://arxiv.org/pdf/1310.1978.pdf.

  18. S. P. Knurenko and A. Sabourov, Nucl. Phys. B (Proc. Suppl.) 212-213, 241 (2011).

    Article  ADS  Google Scholar 

  19. T. Antoni, W. D. Apel, A. F. Badea, K. Bekk, A. Bercuci, J. Blümer, H. Bozdog, I. M. Brancus, A. Chilingarian, K. Daumiller, P. Doll, R. Engel, J. Engler, F. Feßler, H. J. Gils, et al., Astroparticle Phys. 24, 1 (2005).

    Article  ADS  Google Scholar 

  20. M. Amenomori, S. Ayabe, D. Chen, S. W. Cui, L. K. Ding, X. H. Ding, C. F. Feng, Z. Y. Feng, X. Y. Gao, Q. X. Geng, H. W. Guo, H. H. He, M. He, K. Hibino, et al., Adv. Space Res. 37, 1938 (2006).

    Article  ADS  Google Scholar 

  21. J. W. Fowler, L. F. Fortson, C. C. H. Jui, D. B. Kieda, R. A. Ong, C. L. Pryke, and P. Sommers, Astroparticle Phys. 15, 49 (2001).

    Article  ADS  Google Scholar 

  22. T. Abu-Zayyad, R. Aida, M. Allen, R. Anderson, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, E. J. Cho, W. R. Cho, et al., Astrophys. J. Lett. 768, L1 (2013).

    Article  ADS  Google Scholar 

  23. P. Sokolsky, EPJ Web Conf. 52, 06002 (2013).

    Article  Google Scholar 

  24. L. Perrone, EPJ Web Conf. 52, 06001 (2013).

    Article  Google Scholar 

  25. A. R. Bell, Astroparticle Phys. 43, 56 (2013).

    Article  ADS  Google Scholar 

  26. A. R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004).

    Article  ADS  Google Scholar 

  27. A. M. Bykov and I. N. Toptygin, Astron. Lett. 27, 625 (2001).

    Article  ADS  Google Scholar 

  28. J. R. Horandel, Astroparticle Phys. 19, 193 (2003).

    Article  ADS  Google Scholar 

  29. V. I. Zatsepin, A. D. Panov, and N. V. Sokolskaya, J. Phys. Conf. Ser. 409, 012028 (2013).

    Article  Google Scholar 

  30. L. F. Burlaga, N. F. Ness, M. H. Acuna, R. P. Lepping, J. E. P. Connerney, E. C. Stone, and F. B. McDonald, Science 309, 2027 (2005).

    Article  ADS  Google Scholar 

  31. E. C. Stone, A. C. Cummings, F. B. McDonald, B. C. Heikkila, N. Lal, and W. R. Webber, Science 309, 2017 (2005).

    Article  ADS  Google Scholar 

  32. D. A. Gurnett and W. S. Kurth, Nature 454, 78 (2008).

    Article  ADS  Google Scholar 

  33. D. A. Gurnett, W. S. Kurth, L. F. Burlaga, and N. F. Ness, Science 341, 1489 (2013).

    Article  ADS  Google Scholar 

  34. J. L. Linsky and S. Redfield, Astrophys. Space Sci. 354, 29 (2014).

    Article  ADS  Google Scholar 

  35. S. A. Fuselier and I. H. Cairns, Astrophys. J. 771, 83 (2013).

    Article  ADS  Google Scholar 

  36. S. Grzedzielski, M. Bzowski, A. Czechowski, H. O. Funsten, D. J. McComas, and N. A. Schwadron, Astrophys. J. 715, L84 (2010).

    Article  ADS  Google Scholar 

  37. A. D. Erlykin, S. J. Fatemi, and A. W. Wolfendale, Phys. Lett. A 482, 337 (2000).

    Article  Google Scholar 

  38. Sh. Torii, in Proceedings of the 26th International Cosmic Ray Conference, Salt Lake City, UT, 1999, Ed. by D. Kieda, M. Salamon, and B. Dingus, Vol. 3, p. 53.

  39. A. V. Glushkov and M. I. Pravdin, JETP Lett. 95, 439 (2012).

    Article  ADS  Google Scholar 

  40. T. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 51, 392 (1983).

    Article  ADS  Google Scholar 

  41. N. S. Erokhin, S. S. Moiseev, and R. Z. Sagdeev, Sov. Astron. Lett. 15, 1 (1989).

    ADS  Google Scholar 

  42. G. N. Kichigin, JETP Lett. 87, 343 (2008).

    Article  ADS  Google Scholar 

  43. N. S. Erokhin, V. M. Loznikov, and L. A. Mikhailovskaya, Vopr. At. Nauki Tekh., Ser. Plazm. Electron. Novye Metody Uskor., No. 4, 121 (2013).

    Google Scholar 

  44. A. N. Erokhin, N. N. Zol’nikova, and N. S. Erokhin, Plasma Phys. Rep. 40, 812 (2014).

    Article  ADS  Google Scholar 

  45. R. Shkevov, N. S. Erokhin, L. A. Mikhailovskaya, and N. N. Zolnikova, J. Atmos. Solar-Terr. Phys. 99, 73 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Loznikov.

Additional information

Original Russian Text © V.M. Loznikov, N.S. Erokhin, N.N. Zol’nikova, L.A. Mikhailovskaya, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 1, pp. 45–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loznikov, V.M., Erokhin, N.S., Zol’nikova, N.N. et al. Surfatron accelerator in the local interstellar cloud. Plasma Phys. Rep. 43, 51–61 (2017). https://doi.org/10.1134/S1063780X17010081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17010081

Navigation