Skip to main content
Log in

Experimental study of the processes accompanying argon breakdown in a long discharge tube at a reduced pressure

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the breakdown stage of a low-pressure discharge (1 and 5 Torr) in a glass tube the length of which (75 cm) is much larger than its diameter (2.8 cm). Breakdowns occurred under the action of positive voltage pulses with an amplitude of up to 9.4 kV and a characteristic rise time of 2–50 μs. The discharge current in the steady-state mode was 10–120 mA. The electrode voltage, discharge current, and radiation from the discharge gap were detected simultaneously. The dynamic breakdown voltage was measured, the prebreakdown ionization wave was recorded, and its velocity was determined. The dependence of the discharge parameters on the time interval between voltage pulses (the socalled “memory effect”) was analyzed. The memory effect manifests itself in a decrease or an increase in the breakdown voltage and a substantial decrease in its statistical scatter. The time interval between pulses in this case can reach 0.5 s. The effect of illumination of the discharge tube with a light source on the breakdown was studied. It is found that the irradiation of the anode region of the tube by radiation with wavelengths of ≤500 nm substantially reduces the dynamic breakdown voltage. Qualitative explanations of the obtained results are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Electrical Breakdown of Gases, Ed. by J. M. Meek and J. D. Craggs (Wiley, New York, 1978).

  2. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  3. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Book  Google Scholar 

  4. M. Steenbeck and G. Mierdal, Zs. Phys. 106, 311 (1937).

    Article  ADS  Google Scholar 

  5. V. A. Lisovskiy, S. D. Yakovin, and V. D. Yegorenkov, J. Phys. D 33, 2722 (2000).

    Article  ADS  Google Scholar 

  6. W. Bartholomeyczeyk, Ann. Phys. 36, 485 (1939).

    Article  Google Scholar 

  7. A. V. Nedospasov and A. E. Novik, ZhTF. 30, 1329 (1960) [Sov. Phys. Tech. Phys. 5, 1261 (1961)].

    Google Scholar 

  8. R. E. Horstman and F. M. O. Lansink, J. Phys. D 21, 1130 (1988).

    Article  ADS  Google Scholar 

  9. W. J. M. Brok, J. van Dijk, M. D. Bowden, J. J. A. M. van der Mullen, and G. M. W. Kroesen, J. Phys. D 36, 1967 (2003).

  10. M. F. Gendre, M. D. Bowden, H. Haverlag, H. C. M. van den Nieuwenhuizen, J. Gielen, and G.M. W. Kroesen, in Proceedings of International Workshop “Frontiers in Low Temperature Plasma Diagnostics V,” Villaggio Cardigliano, 2003, p. 295.

    Google Scholar 

  11. M. F. Gendre, M. D. Bowden, H. C. M. van den Nieuwenhuizen, M. Haverlag, J. W. A. M. Gielen, and G. M. W. Kroesen, IEEE Trans. Plasma Sci. 33, 262 (2005).

    Article  ADS  Google Scholar 

  12. W. J. M. Brok, M. F. Gendre, and J. J. A. M. van der Mullen, J. Phys. D 40, 156 (2007).

  13. W. J. M. Brok, M. F. Gendre, M. Haverlag, and J. J. A. M. van der Mullen, J. Phys. D 40, 3931 (2007).

    Article  ADS  Google Scholar 

  14. R. Langer, R. Garner, A. Hilscher, R. Tidecks, and S. Horn, J. Phys. D 41, 144011 (2008).

    Article  ADS  Google Scholar 

  15. M. F. Gendre, M. Haverlag, and G. M. W. Kroesen, J. Phys. D 43, 234004 (2010).

    Article  ADS  Google Scholar 

  16. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys. Usp. 37, 247 (1994).

    Article  ADS  Google Scholar 

  17. A. N. Lagarkov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Nauka, Moscow, 1989; Springer-Verlag, 1994).

    Book  Google Scholar 

  18. M. M. Pejovic, G. S. Ristic, and J. P. Karamarkovic, J. Phys. D 35, R91 (2002).

    Article  ADS  Google Scholar 

  19. A. I. Shishpanov, Yu. Z. Ionikh, A. V. Meshchanov, and N. A. Dyatko, Plasma Phys. Rep. 40, 467 (2014).

    Article  ADS  Google Scholar 

  20. A. V. Meshchanov, A. N. Korshunov, Yu. Z. Ionikh, and N. A. Dyatko, Plasma Phys. Rep. 41, 677 (2015).

    Article  ADS  Google Scholar 

  21. N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, A. P. Napartovich, A. I. Shishpanov, Plasma Phys. Rep. 37, 505 (2011).

    Article  ADS  Google Scholar 

  22. A. I. Shishpanov, Candidate’s (Phys.-Math.) Dissertation (St. Petersburg State University, St. Petersburg, 2014). http://spbu.ru/disser2/disser/dissertacia_Shishpanov. pdf.

    Google Scholar 

  23. N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, and A. P. Napartovich, Plasma Phys. Rep. 31, 871 (2005).

    Article  ADS  Google Scholar 

  24. Dj. A. Bošan, M. K. Radovic, and Dj. M. Krompotic, J. Phys. D 19, 2343 (1986).

    Article  ADS  Google Scholar 

  25. Dj. A. Bošan, T. V. Jovanovic, and Dj. M. Krompotic, J. Phys. D 30, 3096 (1997).

    Article  ADS  Google Scholar 

  26. T. V. Jovanovic, Dj. A. Bošan, Dj. M. Krompotic, and M. K. Radovic, J. Phys. D 31, 3249 (1998).

    Article  ADS  Google Scholar 

  27. M. M. Pejovic, G. S. Ristic, and Z. Lj. Petrovic, J. Phys. D 32, 1489 (1999).

    Article  ADS  Google Scholar 

  28. Y. Gosho and A. Harada, J. Phys. D 16, 1047 (1983).

    Article  ADS  Google Scholar 

  29. R. I. Mints, I. I. Mil’man, and V. I. Kryuk, Sov. Phys. Usp. 19, 697 (1976).

    Article  ADS  Google Scholar 

  30. V. A. Fomenko, Emissive Properties of Materials (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  31. O. Guaitella, I. Marinov, and A. Rousseau, Appl. Phys. Lett. 98, 071502 (2011).

    Article  ADS  Google Scholar 

  32. Yu. B. Golubovski, V. A. Maiorov, J. Behnke, and J. F. Behnke, J. Phys. D 35, 751 (2002).

    Article  ADS  Google Scholar 

  33. P. F. Ambrico, M. Ambrico, L. Schiavull, and S. De Benedictis, J. Phys. D 47, 305201 (2014).

    Article  Google Scholar 

  34. W. H. Tay, S. S. Kausik, S. L. Yap, and C. S. Wong, Phys. Plasmas 21, 044502 (2014).

    Article  ADS  Google Scholar 

  35. P. F. Ambrico, M. Ambrico, M. Šimek, A. Colaianni, G. Dilecce, and S. De Benedictis, Appl. Phys. Lett. 94, 231501 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Z. Ionikh.

Additional information

Original Russian Text © A.V. Meshchanov, Yu.Z. Ionikh, A.I. Shishpanov, S.A. Kalinin, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 10, pp. 936–948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshchanov, A.V., Ionikh, Y.Z., Shishpanov, A.I. et al. Experimental study of the processes accompanying argon breakdown in a long discharge tube at a reduced pressure. Plasma Phys. Rep. 42, 978–989 (2016). https://doi.org/10.1134/S1063780X16100068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16100068

Navigation