Skip to main content
Log in

Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D F ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lee, S.-Y. Chung, and D.-E. Kim, Advances in Solid State Lasers Development and Applications, Ed. by M. Grishin, Chap. 22. doi 10.5772/7964

  2. A. V. Andreev, V. M. Gordienko, and A. B. Savel’ev, Quant. Electron. 31, 941 (2001).

    Article  ADS  Google Scholar 

  3. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  4. S. Gordienko, A. Pukhov, and T. Baeva, Phys. Rev. Lett. 93, 115002 (2004), T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046406 (2006).

    Article  ADS  Google Scholar 

  5. N. M. Naumova, J. A. Nees, I. V. Sokolova, B. Hou, and G. A. Mourou, Phys. Rev. Lett. 92, 063902 (2004).

    Article  ADS  Google Scholar 

  6. Yu. M. Mikhailova, V. T. Platonenko, and S. G. Rykovanov, JETP Lett. 81, 571 (2005).

    Article  ADS  Google Scholar 

  7. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, Rev. Mod. Phys. 85, 1 (2013).

    Article  ADS  Google Scholar 

  8. E. Esarey, S. K. Ride, and P. Sprangle, Phys. Rev. E 48, 3003 (1993).

    Article  ADS  Google Scholar 

  9. J. Koga, T. Zh. Esirkepov, and S. V. Bulanov, Phys. Plasmas 12, 093106 (2005).

    Article  ADS  Google Scholar 

  10. Y. Y. Lau, F. He, D. P. Umstadter, and R. Kowalczyk, Phys. Plasmas 10, 2155 (2003).

    Article  ADS  Google Scholar 

  11. S. Chen, A. Maksimchuk, and D. Umstadter, Nature Lett. 396, 653 (1998).

    Article  ADS  Google Scholar 

  12. K. Ta Phuoc, A. Rousse, M. Pittman, J. P. Rousseau, V. Malka, S. Fritzler, D. Umstadter, and D. Hulin, Phys. Rev. Lett. 91, 195001 (2003).

    Article  ADS  Google Scholar 

  13. P. A. Golovinski and E. A. Mikhin, JETP 113, 545 (2011).

    Article  ADS  Google Scholar 

  14. P. Lan, P. Lu, and W. Cao, Phys. Plasmas 13, 013106 (2006).

    Article  ADS  Google Scholar 

  15. A. L. Galkin, V. V. Korobkin, M. Yu. Romanovskii, and O. B. Shiryaeev, Quant. Electron. 37, 903 (2007).

    Article  ADS  Google Scholar 

  16. D. Kim, H. Lee, S. Chung, and K. Lee, New J. Phys. 11, 063050 (2009).

    Article  ADS  Google Scholar 

  17. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, Optics Express 16, 2109 (2008).

    Article  ADS  Google Scholar 

  18. www.hiper-laser.org.

  19. www.extreme-light-infrastructure.eu.

  20. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, Opt. Express 20, 807 (2012).

    Article  ADS  Google Scholar 

  21. O. E. Vais, S. G. Bochkarev, and V. Yu. Bychenkov, Bull. Lebedev Phys. Inst. 43, 12 (2015).

    Article  ADS  Google Scholar 

  22. O. Har-Shemesh and A. Di Piazza, Opt. Lett. 37, 1352 (2012).

    Article  ADS  Google Scholar 

  23. A. V. Borovskiy, A. L. Galkin, and M. P. Kalashnikov, Phys. Plasmas 22, 043107 (2015).

    Article  ADS  Google Scholar 

  24. M. Kalashnikov, A. Andreev, K. Ivanov, A. Galkin, V. Korobkin, M. Romanovsky, O. Shiryaev, M. Schnuerer, J. Braenzel, and V. Trofimov, Laser Part. Beams 33, 361 (2015).

    Article  ADS  Google Scholar 

  25. B. Quesnel and M. Mora, Phys. Rev. E 58, 3719 (1998).

    Article  ADS  Google Scholar 

  26. S. G. Bochkarev and V. Yu. Bychenkov, Quant. Electron. 37, 273 (2007).

    Article  ADS  Google Scholar 

  27. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Izd. Mosk. Gos. Univ., Moscow, 2004) [in Russian].

    Google Scholar 

  28. A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 102, 254802 (2009).

    Article  ADS  Google Scholar 

  29. J. P. Boris, in Proceedings of the 4th Conference on Numerical Simulation of Plasmas, Washington, DC, 1970, Ed. by J. P. Boris and R. A. Shanny (Naval Res. Lab., Washington, DC, 1971), p. 3–67.

  30. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    MATH  Google Scholar 

  31. F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann, Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen, and A. K. Kerman, Phys. Rev. E 51, 4833 (1995).

    Article  ADS  Google Scholar 

  32. P. M. Woodward and J. D. Lawson, J. Inst. Electr. Eng. 95, 363 (1948).

    Google Scholar 

  33. K. I. Popov, V. Yu. Bychenkov, W. Rozmus, and R. D. Sydora, Phys. Plasmas 15, 013108 (2008).

    Article  ADS  Google Scholar 

  34. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

    MATH  Google Scholar 

  35. K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. Kim, Phys. Rev. E 67, 026502 (2003).

    Article  ADS  Google Scholar 

  36. S. Masuda, M. Kando, H. Kotaki, and K. Nakajima, Phys. Plasmas 12, 013102 (2005).

    Article  ADS  Google Scholar 

  37. F. He, Y. Y. Lau, D. P. Umstadter, and T. Strickler, Phys. Plasmas 9, 4325 (2002).

    Article  ADS  Google Scholar 

  38. X. He, R. X. Li, B. Shuai, X. C. Ge, and Z. Z. Xu, Phys. Plasmas 12, 073101 (2005).

    Article  ADS  Google Scholar 

  39. K. Ta Phuoc, F. Burgy, and J.-P. Rousseau, Eur. Phys. J. D 33, 301 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Bochkarev.

Additional information

Original Russian Text © O.E. Vais, S.G. Bochkarev, V.Yu. Bychenkov, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 9, pp. 796–812.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vais, O.E., Bochkarev, S.G. & Bychenkov, V.Y. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse. Plasma Phys. Rep. 42, 818–833 (2016). https://doi.org/10.1134/S1063780X16090105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16090105

Navigation