Skip to main content
Log in

Oscillatory growth behavior of multistream instabilities

  • Plasma Instability
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Multistream instabilities in the one-dimensional Vlasov−Poisson system are studied numerically by using plasmas with multi-humped electron distributions. The evolution of the total wave energy of the plasma oscillations excited by (numerical) noise consists of transient, growth, and nonlinear saturation stages. It is found that, in the growth stage, the total wave energy oscillates for odd number of streams, but it does not oscillate for even number of streams. It is also found that different spectral (Fourier) modes can dominate different stages of the “linear” growth and nonlinear saturation stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Looney and S. C. Brown, Phys. Rev. 93, 965 (1954).

    Article  ADS  Google Scholar 

  2. K. Mizuno and S. Tanaka, Phys. Rev. Lett. 29, 45 (1972).

    Article  ADS  Google Scholar 

  3. K. W. Gentle and J. Hohr, Phys. Fluids 16, 1464 (1973).

    Article  ADS  Google Scholar 

  4. C. P. Deneef, J. H. Malmberg, and T. M. O’Neil, Phys. Rev. Lett. 30, 1032 (1973).

    Article  ADS  Google Scholar 

  5. D. A. Whelan and R. L. Stenzel, Phys. Rev. Lett. 50, 1133 (1983).

    Article  ADS  Google Scholar 

  6. D. A. Hartmann, C. F. Driscoll, T. M. O’Neil, and V. D. Shapiro, Phys. Plasmas 2, 654 (1995).

    Article  ADS  Google Scholar 

  7. O. Penrose, Phys. Fluids 3, 258 (1960).

    Article  ADS  Google Scholar 

  8. A. Hasegawa, Phys. Rev. 169, 204 (1968).

    Article  ADS  Google Scholar 

  9. E. V. Rostomian, Plasma Phys. Controlled Fusion 36, 1737 (1994).

    Article  ADS  Google Scholar 

  10. J. R. Morey and W. Boswell, Phys. Fluids B 1, 1502 (1989).

    Article  ADS  Google Scholar 

  11. A. Volokitin and C. Krafft, Plasma Phys. Controlled Fusion 54, 085002 (2012).

    Article  ADS  Google Scholar 

  12. S. El-Labany and K. G. Rowlands, Plasma Phys. Controlled Fusion 28, 1549 (1986).

    Article  ADS  Google Scholar 

  13. D. M. Karfidov, N. A. Nikolov, P. N. Malinov, and I. P. Trifok, Plasma Phys. Controlled Fusion 30, 389 (1988).

    Article  ADS  Google Scholar 

  14. K. V. Roberts and H. L. Berk, Phys. Rev. Lett. 19, 297 (1967).

    Article  ADS  Google Scholar 

  15. R. L. Morse and C. W. Nielson, Phys. Rev. Lett. 23, 1087 (1969).

    Article  ADS  Google Scholar 

  16. K. W. Gentle and J. Hohr, Phys. Rev. Lett. 30, 75 (1973).

    Article  ADS  Google Scholar 

  17. K. V. Lotov, A. V. Terekhov, and I. V. Timofeev, Plasma Phys. Rep. 35, 518 (2009).

    Article  ADS  Google Scholar 

  18. I. L. Klykov, V. P. Tarakanov, and E. G. Shustin, Plasma Phys. Rep. 38, 263 (2012).

    Article  ADS  Google Scholar 

  19. Y. W. Hou, M. X. Chen, M. Y. Yu, and B. Wu, J. Plasma Phys. 81, 905810602 (2015).

    Article  Google Scholar 

  20. S. J. Gitomer and J. C. Adam, Phys. Fluids 19, 719 (1976).

    Article  ADS  Google Scholar 

  21. V. D. Fedorchenko, Yu. P. Mazalov, A. S. Bakai, and B. N. Rutkevich, Sov. Phys. JETP 38, 1111 (1973).

    ADS  Google Scholar 

  22. C. Z. Cheng and G. Knorr, J. Comp. Phys. 22, 330 (1976).

    Article  ADS  Google Scholar 

  23. Y. W. Hou, Z. W. Ma, and M. Y. Yu, Phys. Plasmas 18, 082101 (2011).

    Article  ADS  Google Scholar 

  24. Y. W. Hou, Z. W. Ma, and M. Y. Yu, Phys. Plasmas 18, 012108 (2011).

    Article  ADS  Google Scholar 

  25. Y. W. Hou, M. X. Chen, M. Y. Yu, B. Wu, and Y. C. Wu, Phys. Plasmas 22, 122101 (2015).

    Article  ADS  Google Scholar 

  26. K. Huang, Statistical Mechanics (Wiley, New York, 1963).

    Google Scholar 

  27. M. Y. Yu and H. Luo, Phys. Plasmas 15, 024504 (2008).

    Article  ADS  Google Scholar 

  28. J. M. Greene, I. B. Bernstein, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. M. Wang, M. Y. Yu, Z. Y. Chen, and G. M. Lu, Laser Part. Beams 31, 155 (2013).

    Article  ADS  Google Scholar 

  30. R. O. Dendy and J. G. Kirk, Plasma Phys. Controlled Fusion 41, 427 (1998).

    Article  ADS  Google Scholar 

  31. S. V. Putvinski, Nucl. Fusion 38, 1275 (1998).

    Article  ADS  Google Scholar 

  32. Y. Wu, Fusion Eng. Des. 81, 2713 (2006).

    Article  Google Scholar 

  33. Y. Wu, Fusion Eng. Des. 83, 1683 (2008).

    Article  Google Scholar 

  34. Y. Wu, J. Jiang, M. Wang, M. Jin, and FDS Team, Nucl. Fusion 51, 103036 (2011).

    Article  ADS  Google Scholar 

  35. V. V. Kulish, A. V. Lysenko, and M. Yu. Rombovsky, Plasma Phys. Rep. 36, 594 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. W. Hou.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y.W., Chen, M.X., Yu, M.Y. et al. Oscillatory growth behavior of multistream instabilities. Plasma Phys. Rep. 42, 900–907 (2016). https://doi.org/10.1134/S1063780X1609004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1609004X

Navigation