Advertisement

Plasma Physics Reports

, Volume 42, Issue 2, pp 168–176 | Cite as

Properties of cylindrical and spherical heavy ion-acoustic solitary and shock structures in a multispecies plasma with superthermal electrons

  • M. G. Shah
  • M. M. Rahman
  • M. R. Hossen
  • A. A. Mamun
Nonlinear Phenomena

Abstract

A theoretical investigation on heavy ion-acoustic (HIA) solitary and shock structures has been accomplished in an unmagnetized multispecies plasma consisting of inertialess kappa-distributed superthermal electrons, Boltzmann light ions, and adiabatic positively charged inertial heavy ions. Using the reductive perturbation technique, the nonplanar (cylindrical and spherical) Kortewg–de Vries (KdV) and Burgers equations have been derived. The solitary and shock wave solutions of the KdV and Burgers equations, respectively, have been numerically analyzed. The effects of superthermality of electrons, adiabaticity of heavy ions, and nonplanar geometry, which noticeably modify the basic features (viz. polarity, amplitude, phase speed, etc.) of small but finite amplitude HIA solitary and shock structures, have been carefully investigated. The HIA solitary and shock structures in nonplanar geometry have been found to distinctly differ from those in planar geometry. Novel features of our present attempt may contribute to the physics of nonlinear electrostatic perturbation in astrophysical and laboratory plasmas.

Keywords

Solitary Wave Plasma Physic Report Dusty Plasma Phase Speed Burger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    M. Temirin, K. Cerny, W. Lotko, and F. S. Mozer, Phys. Rev. Lett. 48, 1175 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    S. I. Popel, S. V. Vladimirov, and P. K. Shukla, Phys. Plasmas 2, 716 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Mamun and P. K. Shukla, Phys. Plasmas 9, 1468 (2002).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    P. K. Shukla, Phys. Plasmas 7, 1044 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    A. Rahman, F. Sayed, and A. A. Mamun, Phys. Plasmas 14, 034503 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Mamun and N. Jahan, Europhys. Lett. 84, 35001 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    S. Tasnim, S. Islam, and A. A. Mamun, Phys. Plasmas 19, 033706 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. Hasan, M. M. Hossain, and A. A. Mamun, Astrophys. Space Sci. 345, 113 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    J. K. Chawla, M. K. Mishra, and R. S. Tiwari, Astrophys. Space Sci. 347, 283 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    S. Ata-ur-Rahman, S. Ali, A. M. Mirza, and A. Qamar, Phys. Plasmas 20, 042305 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    H. Alinejad, Astrophys. Space Sci. 345, 85 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    H. K. Andersen, N. D’Angelo, P. Michelsen, and P. Nielsen, Phys. Rev. Lett. 19, 149 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    H. Ikezi, R. Taylor, and D. Baker, Phys. Rev. Lett. 25, 11 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    K. E. Longren, J. Plasma Phys. 25, 943 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    F. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1984).Google Scholar
  17. 17.
    K. Roy, A. P. Misra, and P. Chatterjee, Phys. Plasmas 15, 032310 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    J. K. Xue, Phys. Lett. A 322, 225 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    M. R. Hossen, L. Nahar, S. Sultana, and A. A. Mamun, High Energy Density Phys. 13, 13 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    M. R. Hossen, L. Nahar, and A. A. Mamun, Phys. Scr. 89, 105603 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    M. R. Hossen, L. Nahar, S. Sultana, and A. A. Mamun, Astrophys. Space Sci. 353, 123 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    M. R. Hossen, L. Nahar, and A. A. Mamun, J. Korean Phys. Soc. 65, 1863 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    C. O. Hines, J. Atmos. Terr. Phys. 11, 36 (1957).ADSCrossRefGoogle Scholar
  24. 24.
    F. Sayed and A. A. Mamun, Phys. Plasmas 14, 034503 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    S. Mahmood and N. Akhtar, Eur. Phys. J. D 49, 217 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    F. Tanjia and A. A. Mamun, J. Plasma Phys. 75, 99 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).ADSCrossRefGoogle Scholar
  28. 28.
    M. P. Leubner, J. Geophys. Res. 87, 6335 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    R. M. Thorne and R. B. Horne, J. Geophys. Res. 99, 17249 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    R. L. Mace and M. A. Hellberg, Phys. Plasmas 2, 2098 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    T. K. Baluka and M. A. Hellberg, Phys. Plasmas 15, 123705 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    T. K. Baluku, M. A. Hellberg, I. Kourakis, and N. S. Saini, Phys. Plasmas 17, 053702 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    M. S. Alam, M. M. Masud, and A. A. Mamun, Plasma Phys. Rep. 39, 1011 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    V. Formisano, G. Moreno, and F. Palmiotto, J. Geophys. Res. 78, 3714 (1973).ADSCrossRefGoogle Scholar
  36. 36.
    E. Marsch, K. H. Muhlhauser, R. Schwenn, H. Rosenbauer, W. Pilipp, and F. M. Neubauer, J. Geophys. Res. 87, 52 (1982).ADSCrossRefGoogle Scholar
  37. 37.
    J. D. Scudder, E. C. Sittler, and H. S. Bridge, J. Geophys. Res. 86, 8157 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    G. Gloeckler and L. A. Fisk, Astrophys. J. 648, L63 (2006).ADSCrossRefGoogle Scholar
  39. 39.
    C. Vocks, G. Mann, and G. Rausche, Astron. Astrophys. 480, 527 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    E. Fourkal, V. Y. Bychenkov, W. Rozmus, R. Sydora, C. Kirkby, C. E. Capjack, S. H. Glenzer, and H. A. Baldis, Phys. Plasmas 8, 550 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    Y. Yagi, V. Antoni, M. Bagatin, D. Desideri, E. Martines, G. Serianni, and F. Vallone, Plasma Phys. Controlled Fusion 39, 1915 (1997).ADSCrossRefGoogle Scholar
  42. 42.
    M. A. Hellberg, R. L. Mace, R. J. Armstrong, and G. Karlstad, J. Plasma Phys. 64, 433 (2000).ADSCrossRefGoogle Scholar
  43. 43.
    B. Basu, Phys. Plasmas 15, 042108 (2008).ADSCrossRefGoogle Scholar
  44. 44.
    T. Cattaert, M. A. Helberg, and R. L. Mace, Phys. Plasmas 14, 082111 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    T. K. Baluku and M. A. Hellberg, Phys. Plasmas 19, 012106 (2012).ADSCrossRefGoogle Scholar
  46. 46.
    N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).ADSCrossRefGoogle Scholar
  47. 47.
    S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).ADSCrossRefGoogle Scholar
  48. 48.
    S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).ADSCrossRefGoogle Scholar
  49. 49.
    P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).CrossRefGoogle Scholar
  50. 50.
    S. I. Popel, A. P. Golub, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).ADSCrossRefGoogle Scholar
  51. 51.
    S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 31, 198 (2005).ADSCrossRefGoogle Scholar
  52. 52.
    T. V. Losseva, S. I. Popel, A. P. Golub, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    B. Sahu, Europhys. Lett. 101, 55002 (2013).ADSCrossRefGoogle Scholar
  54. 54.
    H. R. Pakzad, Astrophys. Space Sci. 331, 169 (2011).ADSCrossRefGoogle Scholar
  55. 55.
    T. K. Baluku, M. A. Hellberg, and R. L. Mace, J. Geophys. Res. 116, A04227 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    M. Shahmansouri, Chin. Phys. Lett. 29, 105201 (2012).CrossRefGoogle Scholar
  57. 57.
    H. Ainejad, M. Mahdavi, and M. Shahmansouri, Eur. Phys. J. Plus 129, 99 (2014).CrossRefGoogle Scholar
  58. 58.
    A. E. Dubinov, Phys. Scr. 80, 035504 (2009).ADSCrossRefGoogle Scholar
  59. 59.
    A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).ADSCrossRefGoogle Scholar
  60. 60.
    P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Canad. J. Phys. 90, 661 (2012).CrossRefGoogle Scholar
  61. 61.
    M. S. Alam, M. J. Uddin, M. M. Masud, and A. A. Mamun, Chaos 24, 033130 (2014).ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    M. G. Shah, M. R. Hossen, and A. A. Mamun, Braz. J. Phys. 45, 219 (2015).ADSCrossRefGoogle Scholar
  63. 63.
    S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).ADSCrossRefGoogle Scholar
  64. 64.
    M.-J. Lee, Phys. Plasmas 14, 032112 (2007).ADSCrossRefGoogle Scholar
  65. 65.
    K. Jilani, A. M. Mirza, and T. A. Khan, Astrophys. Space Sci. 344, 135 (2013).ADSCrossRefGoogle Scholar
  66. 66.
    D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).ADSCrossRefGoogle Scholar
  67. 67.
    C. K. Goertz, Rev. Geophys. 27, 271 (1989).ADSCrossRefGoogle Scholar
  68. 68.
    G. S. Selwyn, Jpn. J. Appl. Phys. 32, 3068 (1993).ADSCrossRefGoogle Scholar
  69. 69.
    J. Winter, Plasma Phys. Controlled Fusion 340, 1201 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. G. Shah
    • 1
  • M. M. Rahman
    • 1
  • M. R. Hossen
    • 2
  • A. A. Mamun
    • 1
  1. 1.Department of PhysicsJahangirnagar UniversitySavar, DhakaBangladesh
  2. 2.Department of Natural SciencesDaffodil International UniversityDhanmondi, DhakaBangladesh

Personalised recommendations