Skip to main content
Log in

Dynamics of plasma−dust structures formed in a trap created in the narrowing of a current channel in a magnetic field

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The geometry and dynamics of plasma−dust structures in a longitudinal magnetic field is studied experimentally. The structures are formed in a glow-discharge trap created in the double electric layer produced as a result of discharge narrowing by means of a dielectric insert introduced in the discharge tube. Studies of structures formed in the new type of glow-discharge trap are of interest from the standpoint of future experiments with complex plasmas in superstrong magnetic fields in which the dust component is magnetized. Different types of dielectric inserts were used: conical and plane ones with symmetric and asymmetric apertures. Conditions for the existence of stable dust structures are determined for dust grains of different density and different dispersity. According to the experimental results, the angular velocity of dust rotation is ≥10 s–1, which is the fastest type of dust motion for all types of discharges in a magnetic field. The rotation is interpreted by analyzing the dynamics of individual dust grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Granovskii, Electrical Current in Gas: Steady-State Current (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  2. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  3. V. N. Tsytovich, G. E. Morfill, and H. Thomas, Plasma Phys. Rep. 28, 623 (2002).

    Article  ADS  Google Scholar 

  4. A. M. Ignatov, Plasma Phys. Rep. 31, 46 (2005).

    Article  ADS  Google Scholar 

  5. V. Yu. Karasev, E. S. Dzlieva, and A. Yu. Ivanov, Phys. Rev. E 74, 066403 (2006).

    Article  ADS  Google Scholar 

  6. M. M. Vasil’ev, L. G. D’yachkov, S. N. Antipov, O. F. Petrov, and V. E. Fortov, JETP Lett. 86, 358 (2007).

    Article  ADS  Google Scholar 

  7. K. Kaw N. Nishikawa, and N. Sato, Phys. Plasmas 9, 387 (2002).

    Article  ADS  Google Scholar 

  8. N. Sato, G. Uchida, T. Kaneko, and S. Shimizu, Phys. Plasmas 8, 1786 (2001).

    Article  ADS  Google Scholar 

  9. N. Sato, AIP Conf. Proc. 649, 66 (2002).

    Article  ADS  Google Scholar 

  10. M. Schwabe, U. Konopka, P. Bandyopadhyay, and G. E. Morfill, Phys. Rev. Lett. 106, 215004 (2011).

    Article  ADS  Google Scholar 

  11. E. S. Dzlieva, M. A. Ermolenko, and V. Yu. Karasev, Plasma Phys. Rep. 38, 540 (2012).

    Article  ADS  Google Scholar 

  12. A. V. Nedospasov, XXXVI International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2009, Book of Abstracts, p. 186.

    Google Scholar 

  13. E. S. Dzlieva, V. Yu. Karasev, and A. I. Eikhval’d, Opt. Spectrosc. 92, 943 (2002).

    Article  ADS  Google Scholar 

  14. A. V. Nedospasov, Phys. Rev. E 79, 036401 (2009).

    Article  ADS  Google Scholar 

  15. A. M. Lipaev, V. I. Molotkov, A. P. Nefedov, O. F. Petrov, V. M. Torchinskii, B. E. Fortov, A. G. Khrapak, and S. A. Khrapak, JETP 85, 1110 (1997).

    Article  ADS  Google Scholar 

  16. V. L. Granovskii and E. I. Urazakov, Sov. Phys. JETP 11, 974 (1960).

    Google Scholar 

  17. V. M. Zakharova, Yu. M. Kagan, and V. I. Perel’, Opt. Spektrosk. 11, 777 (1961).

    Google Scholar 

  18. V. Yu. Karasev, R. I. Semenov, M. P. Chaika, and A. I. Eikhval’d, Opt. Spektrosk. 84, 910 (1998).

    Google Scholar 

  19. A. V. Nedospasov, Europhys. Lett. 103, 25001 (2013).

    Article  ADS  Google Scholar 

  20. E. S. Dzlieva, V. Yu. Karasev, and S. I. Pavlov, Europhys. Lett. 110, 55002 (2015).

    Article  ADS  Google Scholar 

  21. L. J. Hou, Y. N. Wang, and Z. L. Miscovic, Phys. Plasmas 12, 042104 (2005).

    Article  ADS  Google Scholar 

  22. J. Carstensen, F. Greiner, L. J. Hou, H. Maurer, and A. Piel, Phys. Plasmas 16, 013702 (2009).

    Article  ADS  Google Scholar 

  23. A. F. Pal’, A. N. Ryabinkin, A. O. Serov, N. A. Dyatko, A. N. Starostin, and A. V. Filippov, JETP 114, 535 (2012).

    Article  ADS  Google Scholar 

  24. A. F. Pal’, A. N. Ryabinkin, A. O. Serov, and A. V. Filippov, Tech. Phys. Lett. 40, 1142 (2014).

    Article  ADS  Google Scholar 

  25. U. Konopka, D. Samsonov, A. V. Ivlev, J. Goree, V. Steinberg, and G. E. Morfill, Phys. Rev. E 61, 1890 (2000).

    Article  ADS  Google Scholar 

  26. F. Cheung, Al. Samarian, and B. James, New J. Phys. 5, 75 (2003).

    Article  ADS  Google Scholar 

  27. V. Yu. Karasev, A. I. Eikhval’d, and E. S. Dzlieva, Vestn. SPbGU, Ser. 4, No. 2, 120 (2008).

    Google Scholar 

  28. F. F. Chen, Introduction to Plasma Physics (Plenum, New York, 1984).

    Google Scholar 

  29. E. S. Dzlieva, M. A. Ermolenko, V. Yu. Karasev, S. I. Pavlov, L. A. Novikov, and S. A. Maiorov, JETP Lett. 100, 703 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Dzlieva.

Additional information

Original Russian Text © E.S. Dzlieva, V.Yu. Karasev, S.I. Pavlov, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 2, pp. 142–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzlieva, E.S., Karasev, V.Y. & Pavlov, S.I. Dynamics of plasma−dust structures formed in a trap created in the narrowing of a current channel in a magnetic field. Plasma Phys. Rep. 42, 147–154 (2016). https://doi.org/10.1134/S1063780X16020033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16020033

Keywords

Navigation