Skip to main content
Log in

Plasma decay in high-voltage nanosecond discharges in oxygen-containing mixtures

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Plasma decay in high-voltage nanosecond discharges in CO2: O2 and Ar: O2 mixtures at room gas temperature and a pressure of 10 Torr is studied experimentally and theoretically. The time dependence of the electron density during plasma decay is measured using microwave interferometry. The time evolution of the charged particle density, ion composition, and electron temperature is simulated numerically. It is shown that, under the given conditions, the discharge plasma is dominated for the most time by O +2 ions and plasma decay is determined by dissociative and three-body electron−ion recombination. As in the previous studies performed for air and oxygen plasmas, agreement between measurements and calculations is achieved only under the assumption that the rate of three-body recombination of molecular ions is much greater than that for atomic ions. The values of the rate constant of three-body recombination of electrons with О2 + ions in a wide range of electron temperatures (500–5500 K), as well as for thermal (300 K) electrons, are obtained by processing the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys. Usp. 37, 247 (1994).

    Article  ADS  Google Scholar 

  2. S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, D. V. Zatsepin, and A. Yu. Starikovskii, Plasma Sources Sci. Technol. 10, 344 (2001).

    Article  ADS  Google Scholar 

  3. S. M. Starikovskaia, J. Phys. D 39, R265 (2006).

    Article  ADS  Google Scholar 

  4. A. Starikovskiy and N. Aleksandrov, Progr. Energy Comb. Sci. 39, 61 (2013).

    Article  Google Scholar 

  5. S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).

    Article  ADS  Google Scholar 

  6. D. V. Roupassov, A. A. Nikipelov, M. M. Nudnova, and A. Yu. Starikovskii, AIAA J. 47, 168 (2009).

    Article  ADS  Google Scholar 

  7. A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).

    Article  ADS  Google Scholar 

  8. N. L. Aleksandrov, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 40, 4493 (2007).

    Article  ADS  Google Scholar 

  9. N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 38, 179 (2012).

    Article  ADS  Google Scholar 

  10. N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 45, 255202 (2012).

    Article  ADS  Google Scholar 

  11. J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).

    Article  ADS  Google Scholar 

  12. A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).

    Article  ADS  Google Scholar 

  13. B. M. Smirnov, Physics of Atoms and Ions (Atomizdat, Moscow, 1974; Springer, New York, 2003).

    Google Scholar 

  14. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

    Book  Google Scholar 

  15. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Source Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  16. C. B. Collins, Phys. Rev. 140, A1850 (1965).

    Article  ADS  Google Scholar 

  17. N. B. Anikin, S. M. Starikovskaia, and A. Yu. Starikovskii, Plasma Phys. Rep. 30, 1028 (2004).

    Article  ADS  Google Scholar 

  18. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).

    Google Scholar 

  19. M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965).

    Google Scholar 

  20. A. J. Cunningham and R. M. Hobson, J. Phys. B 5, 2320 (1972).

    Article  ADS  Google Scholar 

  21. N. L. Aleksandrov, A. M. Konchakov, L. V. Shachkin, and V. M. Shashkov, Sov. J. Plasma Phys. 12, 703 (1986).

    Google Scholar 

  22. B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983).[in Russian].

    Google Scholar 

  23. M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975).

    Google Scholar 

  24. N. L. Aleksandrov, Usp. Fiz. Nauk 154, 177 (1988).[Sov. Phys. Phys. Usp. 31, 102 (1988).

    Article  Google Scholar 

  25. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and A. G. Sukharev, EEDF: The Software Package for Calculations of the Electron Energy Distribution Function in Gas Mixtures, http://frlxcatnet/download/EEDF/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aleksandrov.

Additional information

Original Russian Text © E.M. Anokhin, M.A. Popov, I.V. Kochetov, N.L. Aleksandrov, A.Yu. Starikovskii, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 1, pp. 65–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhin, E.M., Popov, M.A., Kochetov, I.V. et al. Plasma decay in high-voltage nanosecond discharges in oxygen-containing mixtures. Plasma Phys. Rep. 42, 59–67 (2016). https://doi.org/10.1134/S1063780X16010037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16010037

Keywords

Navigation