Skip to main content
Log in

Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ∼0.5-μs front duration

  • Beams in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (U m ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U m behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Vasilyak, S. P. Vetchinin, and D. N. Polyakov, Tech. Phys. Lett. 25, 749 (1999).

    Article  ADS  Google Scholar 

  2. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Plasma Devices Oper. 16, 267 (2008).

    Article  Google Scholar 

  3. L. P. Babich and T. V. Loiko, Plasma Phys. Rep. 36, 263 (2010).

    Article  ADS  Google Scholar 

  4. A. V. Gurevich, G. A. Mesyats, K. P. Zybin, A. G. Reutova, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin, Phys. Lett. A 375, 2845 (2011).

    Article  ADS  Google Scholar 

  5. V. F. Tarasenko, Plasma Phys. Rep. 37, 409 (2011).

    Article  ADS  Google Scholar 

  6. G. A. Mesyats, M. I. Yalandin, A. G. Reutova, K. A. Sharypov, V. G. Shpak, and S. A. Shunailov, Plasma Phys. Rep. 38, 29 (2012).

    Article  ADS  Google Scholar 

  7. I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, Instrum. Exp. Tech. 55, 72 (2012).

    Article  Google Scholar 

  8. D. Levko, Ya. E. Krasik, and V. F. Tarasenko, Int. Rev. Phys. 6, 165 (2012).

    Google Scholar 

  9. D. V. Rybka, V. F. Tarasenko, A. G. Burachenko, and E. V. Balzovskii, Tech. Phys. Lett. 38, 657 (2012).

    Article  ADS  Google Scholar 

  10. T. V. Loiko, Sov. Phys. Tech. Phys. 25, 232 (1980).

    Google Scholar 

  11. L. P. Babich and T. V. Loiko, Dokl. Phys. 54, 479 (2009).

    Article  Google Scholar 

  12. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (ISTC Science and Technology Series, Vol. 2) (Futurepast, Arlington, VA, 2003).

    Google Scholar 

  13. D. Levko, S. Yatom, V. Vekselman, J. Z. Gleizer, V. Tz. Gurovich, and Ya. E. Krasik, J. Appl. Phys. 111, 013303 (2012).

    Article  ADS  Google Scholar 

  14. V. A. Shklyaev, S. Ya. Belomyttsev, and V. V. Ryzhov, J. Appl. Phys. 112, 113303 (2012).

    Article  ADS  Google Scholar 

  15. C. V. Nguyen, A. P. J. van Deursen, and U. M. Elbert, J. Phys. D 41, 234012 (2008).

    Article  ADS  Google Scholar 

  16. J. R. Dwyer, Z. Saleh, H. K. Rassoul, D. Concha, M. Rahman, V. Cooray, J. Jerauld, M. A. Uman, and V. A. Rakov, J. Geophys. Res. 113, D23207 (2008).

    Article  Google Scholar 

  17. E. V. Oreshkin, S. A. Barengol’ts, V. I. Oreshkin, and S. A. Chaikovskii, Tech. Phys. Lett. 38, 604 (2012).

    Article  ADS  Google Scholar 

  18. V. S. Bosamykin, V. I. Karelin, A. I. Pavlovskii, and P. B. Repin, Sov. Tech. Phys. Lett. 6, 383 (1980).

    Google Scholar 

  19. T. Shao, V. F. Tarasenko, C. Zhang, D. V. Rybka, I. D. Kostyrya, A. V. Kozyrev, Y. Ping, and V. Yu. Kozhevnikov, New J. Phys. 13, 113305 (2011).

    Article  Google Scholar 

  20. D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Tregub, and Yu. V. Shut’ko, Opt. Atmos. Okeana 26(1), 85 (2013).

    Google Scholar 

  21. V. F. Tarasenko, I. D. Kostyrya, E. K. Baksht, and D. V. Rybka, IEEE Trans. Dielect. El. In. 18, 1250 (2011).

    Article  Google Scholar 

  22. G. A. Askar’yan, Tr. FIAN 66, 66 (1973).

    Google Scholar 

  23. V. F. Tarasenko, V. M. Orlovskii, and S. A. Shunailov, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 3, 94 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © I.D. Kostyrya, V.F. Tarasenko, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 3, pp. 294–299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyrya, I.D., Tarasenko, V.F. Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ∼0.5-μs front duration. Plasma Phys. Rep. 41, 269–273 (2015). https://doi.org/10.1134/S1063780X15030058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15030058

Keywords

Navigation