Skip to main content
Log in

Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li0 atoms and Li+1 ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li+1 ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li0 atoms and Li+1 ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li0 atoms on the wall are obtained. The calculations show that the presence of Li+1 ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li+1 density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma layer becomes appreciable when the near-wall density of neutral lithium atoms exceeds 7 × 1011 cm−3. In this case, the density of radiative loss power in the center of the layer is estimated to be about 500–600 kW/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Mirnov, E. A. Azizov, A. G. Alekseev, V. A. Lazarev, R. R. Khayrutdnov, I. E. Lyublinski, A. V. Vertkov, and V. A. Vershkov, Nucl. Fusion 51, 073044 (2011).

    Article  ADS  Google Scholar 

  2. J. Rosato, F. B. Rosmej, R. Stamm, M. B. Kadomtsev, M. G. Levashova, and V. S. Lisitsa, Contrib. Plasma Phys. 50, 404 (2010).

    Article  ADS  Google Scholar 

  3. J. Rosato, F. Catoire, Y. Marandet, A. Mekkaoui, Y. Capes, V. Koubiti, R. Stamm, M. B. Kadomtsev, M. G. Levashova, and V. S. Lisitsa, Phys. Lett. A 375, 4187 (2011).

    Article  ADS  MATH  Google Scholar 

  4. J. Rosato, H. Capes, F. Catoire, M. B. Kadomtsev, M. G. Levashova, and V. S. Lisitsa, J. Nucl. Mater. 415, 5617 (2011).

    Article  Google Scholar 

  5. R. Neu, R. Dux, R. Giroud, A. G. Peeters, J. Stober, and K. J. Zastrow, Nucl. Mater. 313–314, 1150 (2003).

    Google Scholar 

  6. M. E. Puiatti, M. Valisa, C. Angioni, L. Carzotti, P. Mantia, M. Mattioli, L. Carraro, I. Coffey, and C. Sozzi, Phys. Plasmas 13, 042501 (2006).

    Article  ADS  Google Scholar 

  7. R. Dux, R. Neu, A. G. Peeters, G. Pereverzev, A. Muck, F. Ryter, J. Stober, and ASDEX Upgrade team, Plasma Phys. Controlled Fusion 45, 1815 (2003).

    Article  ADS  Google Scholar 

  8. C. Angioni and A. G. Peeters, Phys. Rev. Lett. 96, 095003 (2006).

    Article  ADS  Google Scholar 

  9. S. Futatani, X. Garbet, S. Benkadda, and N. Dubuit, Phys. Plasmas 17, 102501 (2010).

    Article  ADS  Google Scholar 

  10. P. N. Guzdar and A. B. Hassam, Phys. Plasmas 3, 3701 (1996).

    Article  ADS  Google Scholar 

  11. R. V. Shurygin and A. A. Mavrin, Plasma Phys. Rep. 36, 535 (2010).

    Article  ADS  Google Scholar 

  12. D. Kh. Morozov, E. O. Baronova, and I. Yu. Senichenkov, Plasma Phys. Rep. 33, 906 (2007).

    Article  ADS  Google Scholar 

  13. V. I. Gervids and D. Kh. Morozov, JETP Lett. 67, 324 (1998).

    Article  ADS  Google Scholar 

  14. V. I. Gervids and D. Kh. Morozov, Plasma Phys. Rep. 25, 217 (1999).

    ADS  Google Scholar 

  15. A. N. Simakov and P. J. Catto, Phys. Plasmas 10, 4744 (2003).

    Article  ADS  Google Scholar 

  16. D. E. Post, R. V. Jensen, C. B. Tarter, W. Grassberger, and W. Lokke, Nucl. Fusion 17, 1187 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Shurygin.

Additional information

Original Russian Text © R.V. Shurygin, D.Kh. Morozov, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 12, pp. 1037–1049.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurygin, R.V., Morozov, D.K. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma. Plasma Phys. Rep. 40, 919–931 (2014). https://doi.org/10.1134/S1063780X1411004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1411004X

Keywords

Navigation