Skip to main content
Log in

Evolution of small-space plasma in a microthruster designed for small spacecraft

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Plasma and gas particle dynamics in atmospheric pressure helium-filled small volume are investigated using a two-dimensional model. The model includes the conservation equations for the plasma and the neutral gas. In this paper, results are presented from simulation of the interaction between gas and charged species, which in turn causes heating and thrust generation for this microengine. Gas heating and neutral depletion initiations are observed, highlighting the close interaction between gas and charged species in governing the evolution of the small-space plasma inside a microthruster designed for microsatellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Takao, T. Takahashi, K. Eriguchi, and K. Ono, Pure Appl. Chem. 80, 2013 (2008).

    Article  Google Scholar 

  2. Z. Machala, C. Laux, and C. Kruger, IEEE Trans. Plasma Sci. 33, 320 (2005).

    Article  ADS  Google Scholar 

  3. F. Leipold, R. Stark, A. El-Habachi, and K. Schoenbach, J. Phys. D 33, 2268 (2000).

    Article  ADS  Google Scholar 

  4. M. Kushner, J. Phys. D 38, 1633 (2005).

    Article  ADS  Google Scholar 

  5. M. Jugroot and J. K. Harvey, Aeronaut. J 105, 613 (2001).

    Google Scholar 

  6. M. Jugroot, C. P. T. Groth, B. Collings, V. Baranov, B. Thomson, and J. B. French, J. Phys. D 41, 025205 (2008).

    Article  Google Scholar 

  7. U. Kohelschatz, B. Eliasson, and W. Egli, J. Phys. IV France 7, 47 (1997).

    Google Scholar 

  8. T. Deconinck, S. Mahadevan, and L. L. Raja, IEEE Trans. Plasma Sci. 35, 1301 (2007).

    Article  ADS  Google Scholar 

  9. C. Punset, J. P. Boeuf, and L. C. Pitchford, J. Appl. Phys. 83, 1884 (1998).

    Article  ADS  Google Scholar 

  10. C. Punset, S. Cany, and J. P. Boeuf, J. Appl. Phys. 86, 124 (1999).

    Article  ADS  Google Scholar 

  11. D. Bose, D. Hash, T. Govindan, and M. Meyyapan, J. Phys. D 34, 2742 (2001).

    Article  ADS  Google Scholar 

  12. L. Liard, J. Raimbault, J. Max, and P. Chabert, J. Phys. D 40, 5192 (2007).

    Article  ADS  Google Scholar 

  13. M. Jugroot, J. Appl. Phys. 105, 023304 (2009).

    Article  ADS  Google Scholar 

  14. A. J. Davies and C. J. Evans, Report No. CERN-73-10 (CERN, Geneva, 1973).

    Google Scholar 

  15. J. P. Boris and D. L. Book, J. Comp. Phys. 135, 172 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  17. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  18. P. S. Kothnur and L. L. Raja, J. Appl. Phys. 97, 043305 (2005).

    Article  ADS  Google Scholar 

  19. H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, At. Data Nucl. Data Tables 17, 177 (1976).

    Article  ADS  Google Scholar 

  20. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, Report No. SAND86-8246 (Sandia National Laboratories, Livermore, CA, 1986).

    Google Scholar 

  21. J. P. Novak and R. Bartnikas, J. Appl. Phys. 64, 1767 (1988).

    Article  ADS  Google Scholar 

  22. Q. Wang, D. Economou, and V. Donnelly, J. Appl. Phys. 100, 023301 (2006).

    Article  ADS  Google Scholar 

  23. J. P. Novak and R. Bartnikas, J. Appl. Phys. 62, 3605 (1987).

    Article  ADS  Google Scholar 

  24. A. S. Chiper and G. Popa, J. Appl. Phys. 113, 213302 (2013).

    Article  ADS  Google Scholar 

  25. A. Cristofolini, C. A. Borghi, and G. Neretti, J. Appl. Phys. 113, 143307 (2013).

    Article  ADS  Google Scholar 

  26. T. Takahashi, Y. Takao, K. Eriguchi, and K. Ono, J. Phys. D 41, 194005 (2008).

    Article  ADS  Google Scholar 

  27. J. P. Boeuf and L. C. Pitchford, J. Appl. Phys. 97, 103307 (2005).

    Article  ADS  Google Scholar 

  28. T. Deconinck, S. Mahadevan, and L. L. Raja, IEEE Trans. Plasma Sci. 35, 130 (2007).

    Article  Google Scholar 

  29. G. Hagelaar, PhD Thesis (Eindhoven Univ. of Technology, Eindhoven, 2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Farahat.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahat, A.M., Ramadan, E. Evolution of small-space plasma in a microthruster designed for small spacecraft. Plasma Phys. Rep. 40, 981–986 (2014). https://doi.org/10.1134/S1063780X14110026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14110026

Keywords

Navigation