Skip to main content
Log in

Trapping of electrons and acceleration of the electron bunch in a wake wave

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The process of electron trapping by a wake wave excited by a laser pulse in a plasma channel in the case where the electron bunches are injected into the vicinity of the maximum of the wakefield potential at a velocity lower than the wave phase velocity is considered. The mechanism for the formation of a compact electron bunch in the trapping region when only the electrons of the injected bunch that are trapped in the focusing phase mainly undergo the subsequent acceleration in the wakefield is analyzed. The influence of the spatial dimensions of the injected bunch and its energy spread on the length of the trapped electron bunch and the fraction of trapped electrons is studied analytically and numerically. For electron bunches with different ratios of their spatial dimensions to the characteristic dimensions of the wake wave, the influence of the injection energy on the parameters of the high-energy electron bunch trapped and accelerated in the wake-field is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Kando, T. Nakamura, A. Pirozhkov, T. Esirkepov, J. K. Koga, and S. V. Bulanov, Progr. Theor. Phys. Suppl. 193, 236 (2012).

    Article  ADS  Google Scholar 

  2. X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, Nature Commun. 4, 1988 (2013).

    ADS  Google Scholar 

  3. T. Katsouleas, Plasma Phys. Controlled Fusion 46, B575 (2004).

    Article  Google Scholar 

  4. D. A. Jaroszynski, R. Bingham, E. Brunetti, B. Ersfeld, J. Gallacher, B. van der Geer, R. Issac, S. P. Jamison, D. Jones, M. de Loos, A. Lyachev, V. Pavlov, A. Reitsma, Y. Saveliev, G. Vieux, and S. M. Wiggins, Phil. Trans. R. Soc. A 364, 689 (2006).

    Article  ADS  Google Scholar 

  5. W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, Nature Phys. 2, 696 (2006).

    Article  ADS  Google Scholar 

  6. A. A. Soloviev, K. F. Burdonov, V. N. Ginzburg, A. A. Gonoskov, E. V. Katin, A. V. Kim, A. V. Kirsanov, A. V. Korzhimanov, I. Yu. Kostyukov, V. V. Lozhkarev, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, E. N. Nerush, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, M. V. Starodubtsev, I. V. Yakovlev, V. V. Zelenogorsky, and E. A. Khazanov, Nucl. Instrum. Meth. Phys. Res. A 653, 35 (2011).

    Article  ADS  Google Scholar 

  7. D. Umstadter, J. K. Kim, and E. Dodd, Phys. Rev. Lett. 76, 2073 (1996).

    Article  ADS  Google Scholar 

  8. E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).

    Article  ADS  Google Scholar 

  9. C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Yu. Bychenkov, I. V. Glazyrin, and A. V. Karpeev, Phys. Rev. Lett. 104, 025004 (2010).

    Article  ADS  Google Scholar 

  10. N. E. Andreev, E. V. Chizhonkov, and L. M. Gorbunov, Russ. J. Num. Anal. Math. Model. 13, 1 (1998).

    Article  MATH  Google Scholar 

  11. N. E. Andreev, E. V. Chizhonkov, A. A. Frolov, and L. M. Gorbunov, Nucl. Instrum. Meth. Phys. Res. A 410, 469 (1998).

    Article  ADS  Google Scholar 

  12. N. E. Andreev, L. M. Gorbunov, and A. A. Frolov, Plasma Phys. Rep. 24, 825 (1998).

    ADS  Google Scholar 

  13. E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996).

    Article  ADS  Google Scholar 

  14. N. E. Andreev, S. V. Kuznetsov, and I. V. Pogorelsky, Phys. Rev. ST Accel. Beams 3, 21301 (2000).

    Article  ADS  Google Scholar 

  15. S. V. Kuznetsov, Plasma Phys. Rep. 37, 218 (2011).

    Article  ADS  Google Scholar 

  16. S. V. Kuznetsov, Probl. At. Sci. Technol., Ser. Nucl. Phys. Invest., No. 3, 150 (2012).

    Google Scholar 

  17. S. V. Kuznetsov, JETP 115, 171 (2012).

    Article  ADS  Google Scholar 

  18. S. V. Kuznetsov, Plasma Phys. Rep. 38, 116 (2012).

    Article  ADS  Google Scholar 

  19. N. E. Andreev and S. V. Kuznetsov, Bull. Lebedev Phys. Inst., No. 1, 6 (1999)].

    Google Scholar 

  20. S. V. Kuznetsov and N. E. Andreev, Plasma Phys. Rep. 27, 372 (2001).

    Article  ADS  Google Scholar 

  21. D. F. Gordon, R. F. Hubbard, J. H. Cooley, B. Hafizi, A. Ting, and P. Sprangle, Phys. Rev. E 71, 026404 (2005).

    Article  ADS  Google Scholar 

  22. N. E. Andreev and S. V. Kuznetsov, IEEE Trans. Plasma Sci. 28, 1170 (2000).

    Article  ADS  Google Scholar 

  23. L. M. Gorbunov, S. Yu. Kalmykov, and P. Mora, Phys. Plasmas 12, 033101 (2005).

    Article  ADS  Google Scholar 

  24. T. Katsouleas, S. Wilks, P. Chen, J. M. Dawson, and J. J. Su, Part. Accel. 22, 81 (1987).

    Google Scholar 

  25. I. V. Pogorelsky, in Proceedings of the International Conference “Lasers 97,” New Orleans, LA, 1997, Ed. by J. J. Carroll and T. A. Goldman (STS, McLean, VA, 1998), p. 868.

  26. N. E. Andreev and S. V. Kuznetsov, Plasma Phys. Controlled Fusion 45, A39 (2003).

    Article  ADS  Google Scholar 

  27. J. Grebenyuk, K. Floettmann, T. Mehrling, and J. Osterhoff, in Proceedings of XXIII Russian Particle Accelerator Conference, St. Peterburg, 2012, p. 254, http://accelconf.web.cern.ch/AccelConf/rupac2012/papers/moppa005.pdf

  28. J. Han, Phys. Rev. ST Accel. Beams 14, 050101 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuznetsov.

Additional information

Original Russian Text © S.V. Kuznetsov, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 8, pp. 707–720.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V. Trapping of electrons and acceleration of the electron bunch in a wake wave. Plasma Phys. Rep. 40, 611–622 (2014). https://doi.org/10.1134/S1063780X14080054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14080054

Keywords

Navigation