Skip to main content
Log in

Time evolution of the plasma spatial structure during the formation of a current sheet in argon according to holographic interferometry

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The spatiotemporal dynamics of plasma sheets formed in argon plasma in two- and three-dimensional magnetic configurations with an X-type singular line was studied using holographic interferometry. An analogy is revealed between the development of plasma sheets and the time evolution of the current sheet structure, which was previously studied using magnetic measurements. In the late stage of the sheet evolution, a change in the rotation direction of plasma sheets formed in 3D magnetic configurations was observed. Apparently, this is caused by a change in the direction of the Hall currents at the side edges of the current sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163 (1981).

    Article  ADS  Google Scholar 

  2. D. Biscamp, Magnetic Reconnection in Plasmas (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  3. E. R. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  4. Plasma Heliogeophysics, Ed. by L. M. Zelenyi and I. S. Veselovskii (Fizmatlit, Moscow, 2008), Vols. 1, 2 [in Russian].

  5. S. Yu. Bogdanov, N. P. Kyrie, and A. G. Frank, Tr. IOFAN 51, 3 (1996).

    Google Scholar 

  6. A. G. Frank, Phys. Usp. 53, 941 (2010).

    Article  ADS  Google Scholar 

  7. S. Yu. Bogdanov, G. V. Dreiden, N. P. Kyrie, et al., Sov. J. Plasma Phys. 18, 654 (1992).

    Google Scholar 

  8. A. G. Frank, V. P. Gavrilenko, N. P. Kyrie, and G. V. Ostrovskaya, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. III-2: Thermodynamic, Optical, and Transport Properties of Low-Temperature Plasma, Part 1: Optical Properties of Low-Temperature Plasma, Ed. by V. N. Ochkin (Yanus-K, Moscow, 2008), p. 335 [in Russian].

  9. N. P. Kyrie, V. S. Markov, and A. G. Frank, Plasma Phys. Rep. 36, 357 (2010).

    Article  ADS  Google Scholar 

  10. A. G. Frank and C. N. Satunin, Plasma Phys. Rep. 33, 829 (2011).

    Article  ADS  Google Scholar 

  11. A. G. Frank, N. P. Kyrie, and S. N. Satunin, Phys. Plasmas 18, 111209 (2011).

    Article  ADS  Google Scholar 

  12. N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 95, 14 (2012).

    Article  ADS  Google Scholar 

  13. N. P. Kyrie and A. G. Frank, Plasma Phys. Rep. 38, 960 (2012).

    Article  ADS  Google Scholar 

  14. G. V. Dreiden, A. N. Zaidel’, I. I. Komissarova, et al., Sov. Tech. Phys. Lett. 1, 68 (1975).

    Google Scholar 

  15. A. G. Frank, S. Yu. Bogdanov, G. V. Dreiden, et al., Phys. Lett. A 348, 318 (2006).

    Article  ADS  Google Scholar 

  16. S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, et al., Plasma Phys. Rep. 33, 930 (2007).

    Article  ADS  Google Scholar 

  17. A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Plasmas 15, 092102 (2008).

    Article  ADS  Google Scholar 

  18. M. Yamada, R. Kurlsrud, and H. Ji, Rev. Mod. Phys. 82, 603 (2010).

    Article  ADS  Google Scholar 

  19. S. Yu. Bogdanov, G. V. Dreiden, I. I. Komissarova, et al., Plasma Phys. Rep. 28, 549 (2002).

    Article  ADS  Google Scholar 

  20. A. G. Frank, S. Yu. Bogdanov, V. S. Markov, et al., Phys. Plasmas 12, 052316 (2005).

    Article  ADS  Google Scholar 

  21. S. Yu. Bogdanov, G. V. Dreiden, V. S. Markov, et al., Plasma Phys. Rep. 32, 1034 (2006).

    Article  ADS  Google Scholar 

  22. S. Yu. Bogdanov, S. G. Bugrov, V. P. Gritsyna, et al., Plasma Phys. Rep. 33, 435 (2007).

    Article  ADS  Google Scholar 

  23. A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Lett. A 373, 1460 (2009).

    Article  ADS  Google Scholar 

  24. S. Yu. Bogdanov, V. B. Burilina, V. S. Markov, and A. G. Frank, JETP Lett. 59, 537 (1994).

    ADS  Google Scholar 

  25. A. G. Frank, Plasma Phys. Controlled Fusion 41(Suppl. 3A), A687 (1999).

    Article  ADS  Google Scholar 

  26. G. V. Ostrovskaya, A. G. Frank, and S. Yu. Bogdanov, Tech. Phys. 55, 936 (2010).

    Article  Google Scholar 

  27. G. V. Ostrovskaya and A. G. Frank, Tech. Phys. 57, 495 (2012).

    Article  Google Scholar 

  28. S. Yu. Bogdanov, N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 71, 53 (2000).

    Article  ADS  Google Scholar 

  29. R. L. Stenzel and W. Gekelman, J. Geophys. Res. 86, 649 (1981).

    Article  ADS  Google Scholar 

  30. Y. Yagi and N. Kawashima, Jpn. J. Appl. Phys. 24, L259 (1985).

    Article  ADS  Google Scholar 

  31. G. V. Ostrovskaya, Tech. Phys. 53, 1103 (2008).

    Article  Google Scholar 

  32. S. I. Syrovatskii, Sov. Phys. JETP 33, 933 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Ostrovskaya.

Additional information

Original Russian Text © G.V. Ostrovskaya, A.G. Frank, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 1, pp. 24–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovskaya, G.V., Frank, A.G. Time evolution of the plasma spatial structure during the formation of a current sheet in argon according to holographic interferometry. Plasma Phys. Rep. 40, 21–33 (2014). https://doi.org/10.1134/S1063780X14010085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14010085

Keywords

Navigation