Skip to main content
Log in

Mechanism of streamer stopping in a surface dielectric barrier discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Two-dimensional numerical simulations of streamer development in a surface dielectric barrier discharge excited by a voltage pulse with a duration of 30–50 ns in atmospheric air show that the streamer propagation velocity is mainly governed by the velocity of potential diffusion along streamer channels. The calculated streamer length substantially exceeds the experimentally observed one due to the long-term conservation of the conductivity of these channels. A hypothesis on the three-dimensional character of the decay of the surface streamer channel is proposed. The model account of this effect in two-dimensional simulations reduces the calculated time of streamer development and the calculated streamer length to the experimentally observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Roth, D. M. Sherman, and S. P. Wilkinson, AIAA J. 38, 1166 (2000).

    Article  ADS  Google Scholar 

  2. G. Artana, J. D’Adamo, L. Leger, et al., AIAA J. 40, 1773 (2002).

    Article  ADS  Google Scholar 

  3. E. Moreau, J. Phys. D 40, 605 (2007).

    Article  ADS  Google Scholar 

  4. T. C. Corke, M. L. Post, and D. M. Orlov, Exp. Fluids 46, 1 (2009).

    Article  Google Scholar 

  5. A. Starikovskiy and N. Aleksandrov, Progr. Energy Combust. Sci. 39, 61 (2013).

    Article  Google Scholar 

  6. I. N. Kosarev, V. I. Khorunzhenko, E. I. Mintoussov, et al., Plasma Sources Sci. Technol. 21, 045012 (2012).

    Article  ADS  Google Scholar 

  7. V. I. Gibalov and G. J. Pietsch, J. Phys. D 33, 2618 (2000).

    Article  ADS  Google Scholar 

  8. A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).

    Article  ADS  Google Scholar 

  9. T. M. P. Briels, J. Kos, G. J. J. Winands, et al., J. Phys. D 41, 234004 (2008).

    Article  ADS  Google Scholar 

  10. V. R. Soloviev and V. M. Krivtsov, J. Phys. D 42, 125208 (2009).

    Article  ADS  Google Scholar 

  11. G. E. Georghiou, A. P. Papadakis, R. Morrow, and A. C. Metaxas, J. Phys. D 38, R303 (2005).

    Article  ADS  Google Scholar 

  12. N. L. Aleksandrov, F. I. Vysikailo, R. Sh. Islamov, et al., Teplofiz. Vys. Temp. 19, 22 (1981).

    ADS  Google Scholar 

  13. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  14. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 34, 1 (2001).

    Article  Google Scholar 

  15. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

    Google Scholar 

  16. Yu. Akishev, G. Aponin, A. Balakirev, et al., Plasma Sources Sci. Technol. 22, 015004 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Soloviev.

Additional information

Original Russian Text © V.R. Soloviev, V.M. Krivtsov, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 1, pp. 77–89.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soloviev, V.R., Krivtsov, V.M. Mechanism of streamer stopping in a surface dielectric barrier discharge. Plasma Phys. Rep. 40, 65–77 (2014). https://doi.org/10.1134/S1063780X1312009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1312009X

Keywords

Navigation