Skip to main content
Log in

Electron Landau damping in toroidal plasma with Solov’ev equilibrium

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The contribution of untrapped and two groups of trapped particles to the longitudinal (with respect to the magnetic field) elements of the dielectric susceptibility is determined by solving the drift-kinetic equations for such particles in axisymmetric tokamaks with Solov’ev equilibrium. The obtained dielectric characteristics are applicable for studying linear wave processes in the frequency range of Alfvén and fast magnetosonic waves in small- and large-aspect-ratio tokamaks with circular, elliptical, and D-shaped cross sections of magnetic surfaces. The high-frequency power absorbed in plasma via electron Landau damping is estimated by summing up terms containing the imaginary parts of both diagonal and non-diagonal elements of the longitudinal susceptibility. The imaginary part of the longitudinal susceptibility is calculated numerically for spherical tokamaks in a wide range of wave frequencies and magnetic surface radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITER Physics Basis Editors, ITER Physics Expert Group Chairs and Co-Chairs, and ITER Joint Central Team and Physics Integration Unit, Nucl. Fusion 39, 2137 (1999).

    Article  ADS  Google Scholar 

  2. V. K. Gusev, F. Alladio, and A. W. Morris, Plasma Phys. Controlled Fusion 45, A59 (2003).

    Article  ADS  Google Scholar 

  3. M. Ono, M. G. Bell, R. E. Bell, et al., Plasma Phys. Controlled Fusion 45, A335 (2003).

    Article  ADS  Google Scholar 

  4. T. Stix, Nucl. Fusion 15, 737 (1975).

    Article  ADS  Google Scholar 

  5. V. S. Belikov, Ya. I. Kolesnichenko, A. B. Mikhailovskii, and V. A. Yavorskii, Sov. J. Plasma Phys. 3, 146 (1977).

    ADS  Google Scholar 

  6. T. D. Kaladze, A. I. Pyatak, and K. N. Stepanov, Sov. J. Plasma Phys. 8, 467 (1982).

    Google Scholar 

  7. A. G. Elfimov and S. Puri, Nucl. Fusion 30, 1215 (1990).

    Article  Google Scholar 

  8. F. M. Nekrasov, Sov. J. Plasma Phys. 18, 520 (1992).

    Google Scholar 

  9. S. V. Kasilov, A. I. Pyatak, and K. N. Stepanov, Plasma Phys. Rep. 24, 465 (1998).

    ADS  Google Scholar 

  10. B. N. Kuvshinov and A. B. Mikhailovskii, Plasma Phys. Rep. 24, 623 (1998).

    ADS  Google Scholar 

  11. M. Brambilla and T. Krucken, Nucl. Fusion 28, 1813 (1988).

    Article  Google Scholar 

  12. L. Chen and S.-T. Tsai, Plasma Phys. 25, 349 (1983).

    Article  ADS  Google Scholar 

  13. F. Porcelli, R. Stancievicz, W. Kerner, and H. L. Berk, Phys. Plasmas 1, 470 (1994).

    Article  ADS  Google Scholar 

  14. N. I. Grishanov and F. M. Nekrasov, Sov. J. Plasma Phys. 16, 129 (1990).

    Google Scholar 

  15. F. M. Nekrasov, A. G. Elfimov, C. A. de Azevedo, and A. S. de Assis, Plasma Phys. Controlled Fusion 43, 727 (2001).

    Article  ADS  Google Scholar 

  16. N. I. Grishanov, C. A. de Azevedo, and J. P. Neto, Plasma Phys. Controlled Fusion 43, 1003 (2001).

    Article  ADS  Google Scholar 

  17. N. I. Grishanov, G. O. Ludwig, C. A. de Azevedo, and J. P. Neto, Phys. Plasmas 9, 4089 (2002).

    Article  ADS  Google Scholar 

  18. N. I. Grishanov, A. F. D. Loula, C. A. de Azevedo, and J. P. Neto, Plasma Phys. Controlled Fusion 45, 1791 (2003).

    Article  ADS  Google Scholar 

  19. F. M. Nekrasov, A. G. Elfimov, V. S. Tsypin, et al., Czech. J. Phys. 46, 565 (1996).

    Article  ADS  Google Scholar 

  20. V. S. Tsypin, A. G. Elfimov, F. M. Nekrasov, et al., Phys. Plasmas 4, 3635 (1997).

    Article  ADS  Google Scholar 

  21. D. R. Mikkelsen, R. B. White, R. J. Akers, et al., Phys. Plasmas 4, 3667 (1997).

    Article  ADS  Google Scholar 

  22. V. D. Shafranov, Sov. Phys. JETP 6, 6 (1958).

    MathSciNet  Google Scholar 

  23. H. Grad and H. Rubin, in Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 31, p. 190.

  24. L. S. Solov’ev, Sov. Phys. JETP 26, 400 (1968).

    ADS  Google Scholar 

  25. F. Herrnegger, in Proceedings of the 5th European Conference on Controlled Fusion and Plasma Physics, Grenoble, 1972, Vol. 1, p. 26.

  26. E. K. Maschke, Plasma Phys. 15, 535 (1972).

    Article  ADS  Google Scholar 

  27. L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Consultants Bureau, New York, 1986), Vol. 11, p. 153.

  28. S. B. Zheng, A. J. Wooton, and E. R. Solano, Phys. Plasmas 3, 1176 (1996).

    Article  ADS  Google Scholar 

  29. P. J. McCarthy, Phys. Plasmas 6, 3554 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  30. C. V. Atanasiu, S. Günter, K. Lackner, and I. G. Miron, Phys. Plasmas 11, 3510 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  31. B. Shi, Plasma Phys. Controlled Fusion 46, 1105 (2004).

    Article  ADS  Google Scholar 

  32. K. Yamazaki, Report No. IPPJ-413 (Nagoya University, Nagoya, 1979), p. 26.

  33. A. Sykes and the START team, in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, Paper IAEA-CN-69/OV2/5.

  34. C. Z. Cheng and M. S. Chance, Phys. Fluids 29, 3695 (1986).

    Article  ADS  MATH  Google Scholar 

  35. R. Betti and J. P. Freidberg, Phys. Fluids 3, 1865 (1991).

    Article  Google Scholar 

  36. B. Lloyd, J.-W. Ahn, R. J. Akers, et al., Plasma Phys. Controlled Fusion 46, B477 (2004).

    Article  Google Scholar 

  37. R. Raman, J.-W. Ahn, J. P. Allain, et al., Nucl. Fusion 51, 094011 (2011).

    Article  ADS  Google Scholar 

  38. L. F. Ruchko and R. M. O. Galvaõ, Braz. J. Phys. 34, 1722 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Grishanov.

Additional information

Original Russian Text © N.I. Grishanov, N.A. Azarenkov, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 12, pp. 1059–1070.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grishanov, N.I., Azarenkov, N.A. Electron Landau damping in toroidal plasma with Solov’ev equilibrium. Plasma Phys. Rep. 39, 947–958 (2013). https://doi.org/10.1134/S1063780X13120039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13120039

Keywords

Navigation