Skip to main content
Log in

Low-frequency instabilities of collisionless plasma and the 16-moment approximation

  • Plasma Instabilities
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Using the 16-moment equations that take into account heat fluxes in anisotropic collisionless plasma, the properties of magnetohydrodynamic (MHD) instabilities are investigated. For all instabilities occurring in the MHD approach (the normal incompressible firehose instability, the second compressible almost longitudinal firehose instability, and the almost transverse mirror instability of slow magnetosonic modes, as well as thermal instability caused by the heat flux directed along the magnetic field), their kinetic analogs are considered. The kinetic dispersion relation in the low-frequency range in the vicinity of the ion thermal velocity is analyzed. The flow of plasma ions along the magnetic field is taken into account. The thresholds and instability growth rates obtained in the MHD and kinetic approaches are found to be in good agreement. This indicates that the 16-moment MHD equations adequately describe the dynamics of collisionless plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Aschwanden, Physics of the Solar Corona: An Introduction with Problems and Solutions (Springer, Berlin, 2005).

    Google Scholar 

  2. G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc. London A 236, 112 (1956).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Y. Kato, M. Tajiri, and T. Taniuti, J. Phys. Soc. Jpn. 21, 765 (1966).

    Article  ADS  MATH  Google Scholar 

  4. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Space Plasmas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  5. N. S. Dzhalilov, V. D. Kuznetsov, and J. Staude, Astron. Astrophys. 489, 769 (2008).

    Article  ADS  MATH  Google Scholar 

  6. V. D. Kuznetsov and N. S. Dzhalilov, Plasma Phys. Rep. 35, 962 (2009).

    Article  ADS  Google Scholar 

  7. V. D. Kuznetsov and N. S. Dzhalilov, Plasma Phys. Rep. 36, 788 (2010).

    Article  ADS  Google Scholar 

  8. N. S. Dzhalilov, V. D. Kuznetsov, and J. Staude, Contrib. Plasma Phys. 51, 621 (2011).

    Article  ADS  Google Scholar 

  9. V. N. Oraevskii, Yu. V. Konikov, and G. V. Khazanov, Transport Processes in the Near-Earth Plasma (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  10. J. J. Ramos, Phys. Plasmas 10, 3601 (2003).

    Article  ADS  Google Scholar 

  11. N. S. Dzhalilov and V. D. Kuznetsov, Astron. Lett. 37, 649 (2011).

    Article  ADS  Google Scholar 

  12. T. Stix, The Theory of Plasma Waves (Mc Graw-Hill, New York, 1962).

    MATH  Google Scholar 

  13. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, et al., Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

    Google Scholar 

  14. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).

    Google Scholar 

  15. A. B. Kitsenko and K. N. Stepanov, Sov. Phys. JETP 11, 1323 (1960).

    Google Scholar 

  16. B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic, New York, 1961).

    Google Scholar 

  17. A. A. Vedenov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1959), Vol. 3.

  18. S. Chandrasekhar, A. N. Kaufman, and K. M. Watson, Proc. Roy. Soc. London A 245, 435 (1958).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. R. Z. Sagdeev and V. D. Shafranov, Sov. Phys. JETP 12, 130 (1961).

    Google Scholar 

  20. A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer, New York, 1975).

    Book  Google Scholar 

  21. A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 1: Instabilities of a Homogeneous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).

    Google Scholar 

  22. S. P. Gary, Theory of Space Plasma Microinstabilities (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  23. J. V. Hollweg and H. J. Völk, J. Geophys. Res. 75, 5297 (1970).

    Article  ADS  Google Scholar 

  24. P. Hellinger and H. Matsumoto, J. Geophys. Res. 105, 10519 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Dzhalilov.

Additional information

Original Russian Text © N.S. Dzhalilov, V.D. Kuznetsov, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 12, pp. 1122–1130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzhalilov, N.S., Kuznetsov, V.D. Low-frequency instabilities of collisionless plasma and the 16-moment approximation. Plasma Phys. Rep. 39, 1026–1034 (2013). https://doi.org/10.1134/S1063780X13120027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13120027

Keywords

Navigation