Skip to main content
Log in

Modeling of the rotational stabilization of tokamak plasmas with account of skin effect in the resistive wall

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The influence of the Resistive Wall Mode (RWM) rotation on its stability in tokamaks is analyzed. Recently developed analytical theory [V. D. Pustovitov, Phys. Plasmas 19, 062503 (2012)] predicts that, when the skin depth s becomes much smaller than the wall thickness d w , the resistive dissipation in the wall in combination with the mode rotation stabilizes the mode up to complete suppression of instability. Here this effect is studied without the restriction on the ratio s/d w . Thereby the applicability of analytical predictions and accuracy of asymptotic expressions relating the growth rate to the rotation frequency of RWM is clarified. The dispersion relation for the rotating modes is derived in the single-mode cylindrical approximation and solved numerically. It is shown that the rotational stabilization of the plasma, the same as found earlier, is possible even at s/d w of the order unity if the mode rotation frequency is above a critical level. The dependences of the growth rate on the mode frequency are calculated for different plasma parameters. It is shown that, at a given plasma state with a linear response to external perturbations, the growth rate of the mode is maximal at the mode locking (when the rotation is lost). The relation of the mode minimal rotation frequency at the stability boundary with the growth rate at the mode locking is found. The analysis demonstrates strong influence of dissipation in the wall on the dynamics of rotating and locked RWMs and confirms the necessity to incorporate the skin effect into their description. The obtained estimates allow one to compare these predictions with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITER Physics Expert Group on Disruptions, Plasma Control, and MHD and ITER Physics Basis Editors, Nucl. Fusion 39, 2251 (1999).

    Google Scholar 

  2. T. C. Hender, J. C. Wesley, J. Bialek, et al., Nucl. Fusion 47, S128 (2007).

    Article  ADS  Google Scholar 

  3. G. Bateman, MHD Instabilities (MIT Press, Cambridge, MA, 1978).

    Google Scholar 

  4. J. P. Freidberg, Ideal Magnetohydrodynamics (Plenum, New York, 1987).

    Book  Google Scholar 

  5. K. Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion (Iwanami, Tokyo, 1997; Fizmatlit, Moscow, 2007).

    Google Scholar 

  6. M. S. Chu and M. Okabayashi, Plasma Phys. Controlled Fusion 52, 123001 (2010).

    Article  ADS  Google Scholar 

  7. E. J. Strait, T. S. Taylor, A. D. Turnbull, et al., Phys. Rev. Lett. 74, 2483 (1995).

    Article  ADS  Google Scholar 

  8. T. S. Taylor, E. J. Strait, L. Lao, et al., Phys. Plasmas 2, 2390 (1995).

    Article  ADS  Google Scholar 

  9. A. M. Garofalo, A. D. Turnbull, M. E. Austin, et al., Phys. Rev. Lett. 82, 3811 (1999).

    Article  ADS  Google Scholar 

  10. E. J. Strait, J. Bialek, N. Bogatu, et al., Nucl. Fusion 43, 430 (2003).

    Article  ADS  Google Scholar 

  11. E. J. Strait, Fusion Sci. Technol. 48, 864 (2005).

    Google Scholar 

  12. A. M. Garofalo, Fusion Sci. Technol. 48, 918 (2005).

    Google Scholar 

  13. A. M. Garofalo, T. H. Jensen, and E. J. Strait, Phys. Plasmas 10, 4776 (2003).

    Article  ADS  Google Scholar 

  14. S. Yu. Medvedev and V. D. Pustovitov, Plasma Phys. Rep. 29, 1009 (2003).

    Article  ADS  Google Scholar 

  15. V. Igochine, Nucl. Fusion 52, 074010 (2012).

    Article  ADS  Google Scholar 

  16. R. Betti and J. P. Freidberg, Phys. Rev. Lett. 74, 2949 (1995).

    Article  ADS  Google Scholar 

  17. J. B. Taylor, J. W. Connor, C. G. Gimblett, et al., Phys. Plasmas 8, 4062 (2001).

    Article  ADS  Google Scholar 

  18. M. S. Chu, V. S. Chan, M. S. Chance, et al., Nucl. Fusion 43, 196 (2003).

    Article  ADS  Google Scholar 

  19. L. Frassinetti, P. R. Brunsell, and J. R. Drake, Nucl. Fusion 49, 075019 (2009).

    Article  ADS  Google Scholar 

  20. V. D. Pustovitov, Phys. Plasmas 19, 062503 (2012).

    Article  ADS  Google Scholar 

  21. V. D. Pustovitov, Plasma Phys. Rep. 39, 199 (2013).

    Article  ADS  Google Scholar 

  22. P. C. de Vries, G. Waidmann, A. J. H. Donné, and F. C. Schüller, Plasma Phys. Controlled Fusion 38, 467 (1996).

    Article  ADS  Google Scholar 

  23. I. H. Hutchinson, Plasma Phys. Controlled Fusion 43, 145 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  24. S. C. Guo and M. S. Chu, Phys. Plasmas 9, 4685 (2002).

    Article  ADS  Google Scholar 

  25. J. L. Luxon, M. J. Schaffer, G. L. Jackson, et al., Nucl. Fusion 43, 1813 (2003).

    Article  ADS  Google Scholar 

  26. S. M. Wolfe, I. H. Hutchinson, R. S. Granetz, et al., Phys. Plasmas 12, 056110 (2005).

    Article  ADS  Google Scholar 

  27. M. Cecconello, S. Menmuir, P. R. Brunsell, and M. Kuldkepp, Plasma Phys. Controlled Fusion 48, 1311 (2006).

    Article  ADS  Google Scholar 

  28. P. Zanca, Plasma Phys. Controlled Fusion 51, 015006 (2009).

    Article  ADS  Google Scholar 

  29. C. Paz-Soldan, M. I. Brookhart, C. C. Hegna, and C. B. Forest, Phys. Plasmas 19, 056104 (2012).

    Article  ADS  Google Scholar 

  30. V. D. Pustovitov and V. V. Yanovskiy, Plasma Phys. Rep. 39, 345 (2013).

    Article  ADS  Google Scholar 

  31. V. D. Pustovitov, Plasma Phys. Rep. 30, 187 (2004).

    Article  ADS  Google Scholar 

  32. V. D. Pustovitov and M. S. Mayorova, Plasma Phys. Controlled Fusion 48, 51 (2006).

    Article  ADS  Google Scholar 

  33. V. D. Pustovitov, Phys. Plasmas 14, 022501 (2007).

    Article  ADS  Google Scholar 

  34. V. D. Pustovitov, Phys. Plasmas 14, 082506 (2007).

    Article  ADS  Google Scholar 

  35. V. D. Pustovitov, Plasma Phys. Rep. 37, 35 (2011).

    Article  ADS  Google Scholar 

  36. L.-J. Zheng and M. T. Kotschenreuther, Phys. Plasmas 12, 072504 (2005).

    Article  ADS  Google Scholar 

  37. V. D. Pustovitov and V. V. Yanovskiy, Proceedings of the 34th EPS Conference on Plasma Physics, Warsaw, 2007, ECA 31F, P4.115 (2007); http://epsppd.epfl.ch/Warsaw/pdf/P4-115.pdf

    Google Scholar 

  38. V. D. Pustovitov, Phys. Lett. A 379, 2001 (2012).

    Article  ADS  Google Scholar 

  39. V. D. Pustovitov, Plasma Phys. Rep. 38, 697 (2012).

    Article  ADS  Google Scholar 

  40. H. Reimerdes, J. Bialek, M. S. Chance, et al., Nucl. Fusion 45, 368 (2005).

    Article  ADS  Google Scholar 

  41. H. Reimerdes, T. C. Hender, S. A. Sabbagh, et al., Phys. Plasmas 13, 056107 (2006).

    Article  ADS  Google Scholar 

  42. V. D. Pustovitov, Nucl. Fusion 47, 563 (2007).

    Article  ADS  Google Scholar 

  43. V. D. Pustovitov, Plasma Phys. Rep. 34, 18 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Pustovitov.

Additional information

Original Russian Text © V.D. Pustovitov, V.V. Yanovskiy, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 10, pp. 875–882.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovitov, V.D., Yanovskiy, V.V. Modeling of the rotational stabilization of tokamak plasmas with account of skin effect in the resistive wall. Plasma Phys. Rep. 39, 779–786 (2013). https://doi.org/10.1134/S1063780X13100097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13100097

Keywords

Navigation