Skip to main content
Log in

Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of accelerated particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ∼20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained by surfatron acceleration of protons in the heliosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 51, 392 (1983).

    Article  ADS  Google Scholar 

  2. C. Joshi, Radiat. Plasmas 1, 514 (1984).

    Google Scholar 

  3. B. E. Gribov, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, JETP Lett. 42, 63 (1985).

    ADS  Google Scholar 

  4. S. V. Bulanov and A. S. Sakharov, JETP Lett. 44, 543 (1986).

    ADS  Google Scholar 

  5. N. S. Erokhin, A. A. Lazarev, S. S. Moiseev, and R. Z. Sagdeev, Sov. Phys. Doklady 32, 656 (1987).

    ADS  Google Scholar 

  6. M. I. Sitnov, Sov. Tech. Phys. Lett. 14, 40 (1988).

    ADS  Google Scholar 

  7. N. S. Erokhin, S. S. Moiseev, and R. Z. Sagdeev, Astron. Lett. 15, 1 (1989).

    Google Scholar 

  8. G. N. Kichigin, JETP 92, 895 (2001).

    Article  ADS  Google Scholar 

  9. M. E. Dieckmann and P. K. Shukla, Plasma Phys. Controlled Fusion 48, 1515 (2006).

    Article  ADS  Google Scholar 

  10. De-Yu Wang, Quan-Ming Lu, Adv. Space Res. 39, 1471 (2007).

    Article  ADS  Google Scholar 

  11. A. I. Neishtadt, A. V. Artem’ev, L. M. Zelenyi, and D. L. Vainshtein, JETP Lett. 9, 441 (2009).

    Article  ADS  Google Scholar 

  12. V. M. Loznikov and N. S. Erokhin, Vopr. At. Nauki Tekh., Ser. Plazmennaya Elektron. Novye Metody Uskor., No. 4, 121 (2010).

    Google Scholar 

  13. N. S. Erokhin, N. N. Zol’nikova, E. A. Kuznetsov, and L. A. Mikhailovskaya, Ser. Plazmennaya Elektron. Novye Metody Uskor., No. 4, 116 (2010).

    Google Scholar 

  14. A. N. Erokhin, N. S. Erokhin, and V. P. Milant’ev, Plasma Phys. Rep. 38, 396 (2012).

    Article  ADS  Google Scholar 

  15. V. L. Ginzburg and A. A. Rukhadze, Electromagnetic Waves in Plasma (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  16. A. I. Neishtadt, A. V. Artemyev, and L. M. Zelenyi, Regul. Chaotic Dyn. 15, 564 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. M. Boezio, V. Bonvicini, P. Schiavon, et al., Astroparticle Phys. 19, 583 (2003).

    Article  ADS  Google Scholar 

  18. S. Haino, T. Sanuki, K. Abe, et al., Phys. Lett. B 594, 35 (2004).

    Article  ADS  Google Scholar 

  19. W. Menn, M. Hof, O. Reimer, et al., Astrophys. J. 533, 281 (2000).

    Article  ADS  Google Scholar 

  20. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., Science 332, 69 (2011).

    Article  ADS  Google Scholar 

  21. V. M. Loznikov, N. S. Erokhin, and L. A. Mikhailovskaya, Kosm. Issl. 51(3), 191 (2013).

    Google Scholar 

  22. A. D. Panov, J. H. Adams, Jr., H. S. Ahn, et al., Bull. Russ. Acad. Sci.: Physics 73, 564 (2009).

    Article  Google Scholar 

  23. Y. S. Yoon, H. S. Ahn, P. S. Allison, et al., Astrophys. J. 728, 122 (2011).

    Article  ADS  Google Scholar 

  24. V. I. Zatsepin, A. D. Panov, and N. V. Sokolskaya, http://arxiv.org/pdf/1203.6458.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Loznikov.

Additional information

Original Russian Text © V.M. Loznikov, N.S. Erokhin, N.N. Zol’nikova, L.A. Mikhailovskaya, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 10, pp. 927–934.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loznikov, V.M., Erokhin, N.S., Zol’nikova, N.N. et al. Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery. Plasma Phys. Rep. 39, 829–835 (2013). https://doi.org/10.1134/S1063780X13100073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13100073

Keywords

Navigation