Plasma Physics Reports

, Volume 39, Issue 9, pp 755–762 | Cite as

Mathematical modeling of gas-dynamic and radiative processes in experiments with the use of laser and heavy-ion beams

  • G. A. Vergunova
  • V. B. Rozanov
  • O. B. Denisov
  • N. Yu. Orlov
  • O. N. Rosmej
Plasma Emission

Abstract

Results are presented from theoretical and experimental studies of gas-dynamic and radiative processes in the plasma that is planned to be used in future experiments on the stopping of fast heavy-ion beams. These experiments are aimed at measuring the enhanced (as compared to cold substance) plasma stopping power. To reliably interpret the experimental results, it is necessary to create a hydrodynamically stable homogeneous plasma with a uniform temperature and a lifetime exceeding the transit time of the heavy-ion beam (3–5 ns). The method for calculating plasma gas-dynamic characteristics with allowance for radiative heat transfer is described. The specific features of the so-called ion model of plasma, which is used to calculate plasma radiative characteristics, are discussed. The emission spectrum formed as a result of conversion of laser radiation into X-rays and the subsequent passing through a triacetate cellulose (C12H16O8) target is calculated. The simulated spectrum of transmitted radiation satisfactorily agrees with experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Batani, R. Dtzulian, R. Redaelli, et al., Laser Part. Beams 25, 127 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. Bret and C. Deutsch, Laser Part. Beams 24, 269 (2006).ADSGoogle Scholar
  3. 3.
    T. Someya, K. Miyazawa, T. Kikuchi, and S. Kawata, Laser Part. Beams 24, 359 (2006).CrossRefGoogle Scholar
  4. 4.
    O. B. Denisov, N. Yu. Orlov, S. Yu. Gus’kov, et al., Plasma Phys. Rep. 31, 684 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    Ya. B. Zel’dovich and Yu. P. Raizer, Elements of Gas Dynamics and the Classical Theory of Shock Waves (Nauka, Moscow, 1966; Academic, New York, 1968).Google Scholar
  6. 6.
    P. Adamek, O. Renner, L. Drska, et al., Laser Part. Beams 24, 511 (2006).CrossRefGoogle Scholar
  7. 7.
    D. H. H. Hofmann, K. Weyrich, H. Wahl, et al., Phys. Rev. A 42, 2313 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    D. H. H. Hoffmann, A. Blazevic, P. Ni, et al., Laser Part. Beams 23, 47 (2005).ADSGoogle Scholar
  9. 9.
    A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, et al., Laser Part. Beams 24, 283 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    O. N. Rosmej, N. Zhidkov, V. Vatulin, et al., in GSI Scientific Report 2009, Ed. by K. Grosse (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, 2010), p. 387.Google Scholar
  11. 11.
    G. Vergunova, J. Russ. Laser Res. 31, 504 (2010).CrossRefGoogle Scholar
  12. 12.
    N. Yu. Orlov, O. B. Denisov, O. N. Rosmej, et al., Laser Part. Beams 29, 69 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    O. N. Rosmej, V. Bagnout, U. Eisenbarth, et al., Nucl. Instrum. Methods A 653, 52 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    O. B. Denisov and N. Yu. Orlov, Plasma Phys. Rep. 37, 785 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    R. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75, 73 (1949).CrossRefGoogle Scholar
  16. 16.
    B. F. Rozsnyai, Phys. Rev. A 5, 1137 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    A. F. Nikiforov and V. B. Uvarov, Chisl. Metody Mekh. Sploshn. Sred 4(4), 114 (1973).Google Scholar
  18. 18.
    B. F. Rozsnyai, J. Quant. Spectrosc. Radiat. Transfer 27, 211 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    N. Yu. Orlov, Laser Part. Beams 15, 627 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    N. Yu. Orlov, Zh. Vychisl. Mat. Mat. Fiz. 27, 1058 (1987).MATHGoogle Scholar
  21. 21.
    N. Yu. Orlov and V. E. Fortov, Plasma Phys. Rep. 27, 44 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    T. A. Shelkovenko, S. A. Pikuz, R. D. McBride, et al., Plasma Phys. Rep. 36, 50 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    N. Yu. Orlov, S. Yu. Guskov, S. A. Pikuz, et al., Laser Part. Beams 25, 1 (2007).CrossRefGoogle Scholar
  24. 24.
    O. B. Denisov and N. Yu. Orlov, Mat. Model. 23(2), 53 (2011).MATHGoogle Scholar
  25. 25.
    B. N. Chetverushkin, Mathematical Modeling of Radiating Gas Dynanics (Nauka, Moscow, 1985) [in Russian].Google Scholar
  26. 26.
    T. K. Govorun, G. A. Evseev, and T. V. Mishchenko, Preprint No. 176 (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 1986).Google Scholar
  27. 27.
    V. Ya. Gol’din, Zh. Vychisl. Mat. Mat. Fiz. 4, 1078 (1964).MathSciNetGoogle Scholar
  28. 28.
    A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma (Fizmatlit, Moscow, 2000) [in Russian].Google Scholar
  29. 29.
    E. Ivanov, V. Rozanov, and G. Vergunova, Proc. SPIE 4424, 308 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • G. A. Vergunova
    • 1
  • V. B. Rozanov
    • 1
  • O. B. Denisov
    • 2
  • N. Yu. Orlov
    • 2
  • O. N. Rosmej
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations