Skip to main content
Log in

Generalized Bohm’s criterion and negative anode voltage fall in electric discharges

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The value of the voltage fall across the anode sheath is found as a function of the current density. Analytic solutions are obtained in a wide range of the ratio of the directed velocity of plasma electrons v 0 to their thermal velocity v T . It is shown that the voltage fall in a one-dimensional collisionless anode sheath is always negative. At the small values of v 0/v T , the obtained expression asymptotically transforms into the Langmuir formula. Generalized Bohm’s criterion for an electric discharge with allowance for the space charge density ρ(0), electric field E(0), ion velocity v i (0), and ratio v 0/v T at the plasma-sheath interface is formulated. It is shown that the minimum value of the ion velocity v * i (0) corresponds to the vanishing of the electric field at one point inside the sheath. The dependence of v * i (0) on ρ(0), E(0), and v 0/v T determines the boundary of the existence domain of stationary solutions in the sheath. Using this criterion, the maximum possible degree of contraction of the electron current at the anode is determined for a short high-current vacuum arc discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).

    Article  ADS  Google Scholar 

  2. K. N. Ul’yanov, High Temp. 38, 344 (2000).

    Article  Google Scholar 

  3. D. Bohm, in The Characteristics of Electrical Discharges in Magnetic Fields, Ed. by A. Guthrie and R. K. Wakerling (McGraw-Hill, New York, 1949), p. 77.

  4. N. Sternberg and V. Godyak, IEEE Trans. Plasma Sci. 35, 1341 (2007).

    Article  ADS  Google Scholar 

  5. K.-U. Riemann, J. Phys. D 24, 493 (1991).

    Article  ADS  Google Scholar 

  6. R. N. Franklin, J. Phys. D 36, R309 (2003).

    Article  ADS  Google Scholar 

  7. V. L. Granovskii, Electrical Current in Gas (Nauka, Moscow, 1971), Vol. 2 [in Russian].

    Google Scholar 

  8. Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  9. V. L. Granovskii, Electrical Current in Gas (Gostekhteoretizdat, Moscow, 1952), Vol. 1 [in Russian].

    Google Scholar 

  10. B. M. Smirnov, Properties of Gas-Discharge Plasma (Izd. Politekhnicheskogo Univ., St. Petersburg, 2000).

    Google Scholar 

  11. Ya. I. Londer and K. N. Ul’yanov, High Temp. 49, 315 (2011).

    Article  Google Scholar 

  12. Y. Langlois, P. Chapelle, A. Jardy, et al., J. Appl. Phys. 109, 113306 (2011).

    Article  ADS  Google Scholar 

  13. E. Schade and D. Shmelev, IEEE Trans. Plasma Sci. 31, 890 (2003).

    Article  ADS  Google Scholar 

  14. Ya. I. Londer and K. N. Ulyanov, IEEE Trans. Plasma Sci. 35, 897 (2007).

    Article  ADS  Google Scholar 

  15. D. K. Ul’yanov and K. N. Ul’yanov, High Temp. 50, 301 (2012).

    Article  Google Scholar 

  16. D. K. Ul’yanov and K. N. Ul’yanov, Plasma Phys. Rep. 39, 86 (2013).

    Article  ADS  Google Scholar 

  17. Ya. I. Londer and K. N. Ulyanov, in Proceedings of the XXV International Symposium on Discharges and Electrical Insulation in Vacuum, Tomsk, 2012, Vol. 2, p. 341.

  18. R. L. Boxman and S. Goldsmith, J. Appl. Phys. 54, 592 (1983).

    Article  ADS  Google Scholar 

  19. C. Wieckert and W. Egli, IEEE Trans. Plasma Sci. 17, 649 (1989).

    Article  ADS  Google Scholar 

  20. L. Wang, S. Jia, Z. Shi, and M. Rong, J. Appl. Phys. 100, 113304 (2006).

    Article  ADS  Google Scholar 

  21. N. A. Almeida and M. S. Benilov, Phys. Plasmas 19, 073514 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Ul’yanov.

Additional information

Original Russian Text © Ya.I. Londer, K.N. Ul’yanov, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 10, pp. 949–957.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Londer, Y.I., Ul’yanov, K.N. Generalized Bohm’s criterion and negative anode voltage fall in electric discharges. Plasma Phys. Rep. 39, 849–856 (2013). https://doi.org/10.1134/S1063780X13090055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13090055

Keywords

Navigation