Skip to main content
Log in

A waveguide electron cyclotron resonance source of X-ray emission for low-dose introscopy

  • Plasma Methods
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

It is shown that a “point” target in a conventional evacuated waveguide in the magnetic field of a mirror trap formed by two disk magnets axially magnetized in the direction perpendicular to the electric field vector represents a source of X-ray bremsstrahlung of electrons accelerated in an ECR discharge with a broad range of photon energies up to 0.8 MeV. The dosage rate of the source is ∼1 R/h. The source fed from a conventional microwave oven has small dimensions and a low weight. It is easy-to-use and is suitable as a laboratory tool, in particular, in radiobiology and introscopy. After passing through the object, X-ray emission is recorded by a digital camera with the help of a highly sensitive X-ray fluorescent screen, which converts it into an optical image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Sergeichev and I. A. Sychev, Geomagn. Aeron. 42, 550 (2002).

    Google Scholar 

  2. V. D. Dougar-Jabon, Phys. Scr. 69, 313 (2004).

    Article  ADS  Google Scholar 

  3. K. F. Sergeichev, D. M. Karfidov, and N. A. Lukina, Plasma Phys. Rep. 33, 455 (2007).

    Article  ADS  Google Scholar 

  4. D. M. Karfidov and K. F. Sergeichev, Prikl. Fiz., No. 6, 102 (2007).

    Google Scholar 

  5. V. A. Zhil’tsov, A. Yu. Kuyanov, A. A. Skovoroda, and A. V. Timofeev, Plasma Phys. Rep. 20, 242 (1994).

    ADS  Google Scholar 

  6. D. Rose and M. Clark, Plasmas and Controlled Fusion (MIT Press, Cambridge, MA, 1961).

    MATH  Google Scholar 

  7. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

    MATH  Google Scholar 

  8. A. V. Gurevich, G. M. Milikh, and R. Roussel-Dupre, Phys. Lett. A 165, 463 (1992).

    Article  ADS  Google Scholar 

  9. G. Gibson, W. Jordan, and E. Lauer, Phys. Fluids 6, 116 (1963).

    Article  ADS  Google Scholar 

  10. M. S. Ioffe and B. B. Kadomtsev, Sov. Phys. Usp. 13, 225 (1970).

    Article  ADS  Google Scholar 

  11. http://www.docload.ru/Basesdoc/4/4048/index.htm (GOST SSSR 20426-82. Nonintrusive Control Methods of Radiative Defectoscopy.)

  12. V. A. Dobromyslov and S. V. Rumyantsev, Radiative Introscopy (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  13. F. N. Kharadzha, General Course of X-ray Engineering (Energiya, Leningrad, 1966) [in Russian].

    Google Scholar 

  14. www.medtek.ru (OOO Medtekh. Optimization of Regimes and Doses of Patient Irradiation for Obtaining Adequate X-ray Radiographic Informationi.)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Sergeichev.

Additional information

Original Russian Text © K.F. Sergeichev, V.Yu. Ionidi, D.M. Karfidov, N.A. Lukina, 2012, published in Prikladnaya Fizika, 2012, No. 6, pp. 123–132

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeichev, K.F., Ionidi, V.Y., Karfidov, D.M. et al. A waveguide electron cyclotron resonance source of X-ray emission for low-dose introscopy. Plasma Phys. Rep. 39, 1149–1157 (2013). https://doi.org/10.1134/S1063780X13070180

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13070180

Keywords

Navigation