Skip to main content
Log in

Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The influence of the cathode design on the energy of the main group of electrons generated during a subnanosecond breakdown in atmospheric-pressure air was studied experimentally. The electron energy was measured using a time-of-flight spectrometer with a picosecond time resolution. It is shown that the energy of the main group of electrons increases with increasing cathode curvature radius. It is established using 400- to 650-μm-thick aluminum foils that the electron energy reaches its maximum value in voltage pulses with abrupt trailing edges and amplitudes below the maximum amplitude. Electrons with maximum energies are generated with a stronger spatial and amplitude scatter than those with average energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Babich and T. V. Loiko, Plasma Phys. Rep. 36, 263 (2010).

    Article  ADS  Google Scholar 

  2. V. F. Tarasenko, Plasma Phys. Rep. 37, 409 (2011).

    Article  ADS  Google Scholar 

  3. V. Yu. Khomich and V. A. Yamshchikov, Prikl. Fiz., No. 6, 77 (2010).

    Google Scholar 

  4. I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, Instrum. Exp. Tech. 55, 72 (2012).

    Article  Google Scholar 

  5. G. A. Mesyats, M. I. Yalandin, A. G. Reutova, et al., Plasma Phys. Rep. 38, 29 (2012).

    Article  ADS  Google Scholar 

  6. D. Levko, S. Yatom, V. Vekselman, et al., J. Appl. Phys. 111, 013303 (2012).

    Article  ADS  Google Scholar 

  7. D. V. Rybka, V. F. Tarasenko, A. G. Burachenko, and E. V. Balzovskii, Tech. Phys. Lett. 38, 657 (2012).

    Article  ADS  Google Scholar 

  8. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, et al., Laser Part. Beams 26, 605 (2008).

    Article  Google Scholar 

  9. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (ISTC Science and Technology Series, Vol. 2) (Futurepast, Arlington, VA, 2003).

    Google Scholar 

  10. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, et al., Plasma Phys. Rep. 34, 1028 (2008).

    Article  ADS  Google Scholar 

  11. E. K. Baksht, A. G. Burachenko, V. Yu. Kozhevnikov, et al., J. Phys. D 43, 305201 (2010).

    Article  Google Scholar 

  12. V. F. Tarasenko, S. K. Lyubutin, S. N. Rukin, et al., Tech. Phys. 50, 1462 (2005).

    Article  Google Scholar 

  13. Runaway Electron Beams and Discharges Based on Background Electron Multiplication Wave in Dense Gases, Ed. by S. I. Yakovlenko (Nauka, Moscow, 2007), Proc. of Prokhorov Inst. of General Physics, Vol. 63 (2007) [in Russian].

    Google Scholar 

  14. V. F. Tarasenko, V. M. Orlovskii, and S. A. Shunailov, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 3, 94 (2003).

    Google Scholar 

  15. G. A. Askar’yan, Tr. FIAN 66, 66 (1973).

    Google Scholar 

  16. A. P. Komar, S. P. Kruglov, and I. V. Lopatin, Measurements of the Total Bremsstrahlung Energy from Electron Accelerators (Nauka, Leningrad, 1972) [in Russian].

    Google Scholar 

  17. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys. Usp. 37, 247 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, D.V. Rybka, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 7, pp. 668–676.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasenko, V.F., Baksht, E.K., Burachenko, A.G. et al. Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air. Plasma Phys. Rep. 39, 592–599 (2013). https://doi.org/10.1134/S1063780X13060111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13060111

Keywords

Navigation