Plasma Physics Reports

, Volume 39, Issue 2, pp 120–129 | Cite as

Simulation of the conditions of wave excitation for the optimization of the lower hybrid current drive in the Globus-M spherical tokamak

  • V. V. Dyachenko
  • M. A. Irzak
  • E. D. Cherotchenko
  • O. N. Shcherbinin


At present, the method of current drive by means of lower hybrid waves is not applied to low-aspect-ratio tokamaks, because, in the traditional approach, it would be necessary to use waves with a very high slowing-down factor. However, studies of new transparency regions for waves in a nonuniform magnetized plasma, performed earlier at the Ioffe Physical Technical Institute, Russian Academy of Sciences, made it possible to develop an approach in which slow waves are excited in the poloidal (rather than toroidal) direction. In this approach, moderately slowed-down waves first propagate in the poloidal direction, but then turn in the toroidalal direction and get into the dense plasma. In this work, this approach is further developed using numerical methods. In particular, the influence of the density profile in the edge plasma on the efficiency of wave excitation for given antenna parameters is studied in detail.


Density Profile Plasma Physic Report Plasma Boundary Edge Plasma Excited Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Watari, Plasma Phys. Controlled Fusion 35, A63 (1993).CrossRefGoogle Scholar
  2. 2.
    Y. Peysson, Plasma Phys. Controlled Fusion 42, B87 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. R. Esterkin, E. Z. Gusakov, M. A. Irzak, and A. D. Piliya, in Proceedings of the 22nd EPS Conference on Controlled Fusion and Plasma Physics, Bournemouth, 1995, ECA 19C(4), 389 (1995).Google Scholar
  4. 4.
    E. Z. Gusakov, M. A. Irzak, and A. D. Piliya, JETP Lett. 65, 25 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    A. R. Esterkin, E. Z. Gusakov, and M. A. Irzak, in Proceedings of the International Workshop on Spherical Torus, St. Petersburg, 1997, Vol. 1, p. 265.Google Scholar
  6. 6.
    M. A. Irzak, in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, ECA 27A, P–2.175 (2003).Google Scholar
  7. 7.
    O. N. Shcherbinin, E. Z. Gusakov, V. V. Dyachenko, et al., in Proceedings of the 18th Topical Conference on RF Power in Plasmas, Gent, 2009, AIP Conf. Proc. 1187, 427 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    E. Z. Gusakov, V. V. Dyachenko, M. A. Irzak, et al., Plasma Phys. Controlled Fusion 52, 075018 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    V. K. Gusev, V. E. Golant, E. Z. Gusakov, et al., Tech. Phys. 44, 1054 (1999).CrossRefGoogle Scholar
  10. 10.
    Yu. F. Baranov, A. Ekedahl, P. Froissard, et al., Nucl. Fusion 36, 1031 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. F. Baranov, A. D. Piliya, and A. R. Esterkin, JETP Lett. 51, 701 (1990).ADSGoogle Scholar
  12. 12.
    A. R. Esterkin and A. D. Piliya, Nucl. Fusion 36, 1501 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Irzak and O. N. Shcherbinin, Nucl. Fusion 35, 1341 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    A. Ekedahl, G. Granucci, J. Mailloux, et al., Nucl. Fusion 45, 351 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. V. Dyachenko
    • 1
  • M. A. Irzak
    • 1
  • E. D. Cherotchenko
    • 2
  • O. N. Shcherbinin
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations