Plasma Physics Reports

, Volume 39, Issue 2, pp 144–154 | Cite as

Long-lived Ar-Hg plasma in the afterglow of a high-current pulsed discharge

  • K. F. Sergeichev
  • N. A. Lukina
  • A. A. Fesenko
Diagnostics of Pulsed Systems

Abstract

High-density (n > 1012 cm−3) argon-mercury plasma produced by a short (t ∼ 20 μs) high-power pulsed discharge in argon with an admixture of mercury vapor at a discharge current of ∼50 A, an argon pressure of ∼4 mm Hg, and a mercury vapor pressure of ∼10−3 mm Hg was studied using optical spectroscopy and radio physics methods. It is found that the lifetime of this plasma after the end of the discharge pulse is up to 10−2 s. It is shown that such an abnormally long lifetime of such an afterglow plasma, as compared to the plasma of an argon discharge without an admixture of mercury vapor, is related to the long residence time of atoms and ions of both argon and mercury in highly excited states due to chemi-ionization processes involving long-lived metastable argon ions. It is suggested that dissociative recombination of highly excited molecular ions of argon play an important role in the transfer of excitation to argon atoms and ions that are close to autoionization states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. F. Sergeichev and D. M. Karfidov, Plasma Phys. Rep. 9, 733 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    M. Moisan and Z. Zakrewski, Rev. Phys. Appl. 24, 1025 (1991).Google Scholar
  3. 3.
    E. N. Istomin, D. M. Karfidov, I. M. Minaev, et al., Plasma Phys. Rep. 5, 388 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. Karov, I. Rusinov, and A. Blagoev, J. Phys. B 30, 1361 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    G. N. Gerasimov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. III-2: Thermodynamic, Optical, and Transport Properties of Low-Temperature Plasma, Part 5: Spectroscopy of Decaying Plasma (Yanus-K, Moscow, 2008), p. 383 [in Russian].Google Scholar
  6. 6.
    E. L. Latush, Soros. Obrazovat. Zh., No. 8, 83 (1999).Google Scholar
  7. 7.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  8. 8.
    J. Kreher, G. Bartolomaus, J. Wilhelm, and W. Stern, Contrib. Plasma Phys. 30, 621 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    O. V. Mitichkin, G. A. Kurkin, and S. V. Kostyuchenko, in Proceedings of the All-Russian Conference on Physical Electronics, Makhachkala, 1999, p. 118.Google Scholar
  10. 10.
    L. I. Gudzenko, L. A. Shelepin, and S. I. Yakovlenko, Sov. Phys. Usp. 17, 848 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    M. Sugawara, T. Okada, and Y. Kobayashi, J. Phys. D 19, 1213 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    A. Blagoev, T. Popov, N. Pilosoff, et al., J. Phys. Conf. Ser. 44, 80 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    A. Bogaerts, J. Anal. At. Spectrom. 22, 502 (2007).CrossRefGoogle Scholar
  14. 14.
    W. J. M. Brok, M. F. Gendre, and J. J. A. M. van der Mullen, J. Phys. D 40, 156 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    V. P. Shestopalov, L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Wave Diffraction on Gratings (Izd. Kharkovskogo Univ., Kharkov, 1973).Google Scholar
  16. 16.
  17. 17.
    Y.-J. Shiu and M. A. Biondi, Phys. Rev. A 17, 868 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. I. Ovsepyan, Tr. FIAN 145, 3 (1984).Google Scholar
  19. 19.
    D. G. Armour, J. Phys. B 7, 1213 (1974).ADSCrossRefGoogle Scholar
  20. 20.
    A. H. Futch and F. A. Grant, Phys. Rev. 104, 356 (1956).ADSCrossRefGoogle Scholar
  21. 21.
    G. P. Jackson, C. L. Lewis, S. K. Doorn, et al., Spectrochim. Acta B 56, 2449 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • K. F. Sergeichev
    • 1
  • N. A. Lukina
    • 1
  • A. A. Fesenko
    • 1
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations