Plasma Physics Reports

, Volume 39, Issue 2, pp 155–166 | Cite as

Theoretical foundations of detection of terahertz radiation in laser-plasma interactions

Laser Plasma
  • 102 Downloads

Abstract

A theory is developed enabling one to calculate the temporal profile and spectrum of a terahertz wave packet from the energy of the second harmonic of optical radiation generated during the nonlinear interaction between terahertz and circularly polarized laser pulses in the skin layer of an overdense plasma. It is shown that the spectral and temporal characteristics of the envelope of the second harmonic of optical radiation coincide with those of the terahertz pulse only at small durations of the detecting laser radiation. For long laser pulses, the temporal profile and spectrum of the second harmonic are mainly determined by the characteristics of optical radiation at the carrier frequency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hamster, A. Sullivan, S. Gordon, et al., Phys. Rev. Lett. 71, 2725 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    N. Yugami, T. Higashiguchi, H. Gao, et al., Phys. Rev. Lett. 89, 065003 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    D. Dorranian, M. Starodubtsev, H. Kawakami, et al., Phys. Rev. E 68, 026409 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    P. Sprangle, J. R. Penano, B. Hafizi, and C. A. Kapetanakos, Phys. Rev. E 69, 066415 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    J. van Tilborg, C. B. Schroeder, C. V. Filip, et al., Phys. Rev. Lett. 96, 014801 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    L. M. Gorbunov and A. A. Frolov, JETP 83, 967 (1996).ADSGoogle Scholar
  7. 7.
    L. M. Gorbunov and A. A. Frolov, Plasma Phys. Rep. 26, 646 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    Z.-M. Sheng, H.-C. Wu, K. Li, and J. Zhang, Phys. Rev. E 69, 025401 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    Z.-M. Sheng, K. Mima, J. Zhang, and H. Sanuki, Phys. Rev. Lett. 94, 095003 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    Z.-M. Sheng, K. Mima, and J. Zhang, Phys. Plasmas 12, 123103 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    J. Yoshii, C. H. Lai, T. Katsouleas, et al., Phys. Rev. Lett. 79, 4194 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    N. Spence, T. Katsouleas, P. Muggli, et al., Phys. Plasmas 8, 4995 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    M. I. Bakunov, S. V. Bodrov, A. V. Maslov, and A. M. Sergeev, Phys. Rev. E 70, 016401 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    L. M. Gorbunov and A. A. Frolov, JETP 102, 894 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    L. M. Gorbunov and A. A. Frolov, Plasma Phys. Rep. 32, 500 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Frolov, Plasma Phys. Rep. 33, 1014 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Uryupin and A. A. Frolov, JETP 114, 878 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    A. Nahata, D. H. Auston, and T. F. Heinz, Appl. Phys. Lett. 68, 2 (1996).CrossRefGoogle Scholar
  19. 19.
    S. P. Kovalev and G. Kh. Kitaeva, JETP Lett. 94, 91 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    N. Karpowicz, J. Dai, X. Lu, et al., Appl. Phys. Lett. 92, 011131 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    X. Lu and X.-C. Zhang, Appl. Phys. Lett. 98, 151111 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Frolov, A. V. Borodin, M. N. Esaulkov, et al., JETP 114, 893 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    A. Sh. Abdullaev, Yu. M. Aliev, and A. A. Frolov, Sov. J. Plasma Phys. 12, 475 (1986).Google Scholar
  24. 24.
    V. P. Silin, Sov. Phys. JETP 20, 1510 (1964).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations