Skip to main content
Log in

Effect of the shear flow in the generation and self-organization of internal gravity wave structures in the dissipative ionosphere

  • Ionospheric Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A linear mechanism for the generation and amplification of internal gravity waves and their further nonlinear dynamics in the stably stratified dissipative ionosphere in the presence of an inhomogeneous zonal wind (shear flow) is studied. For shear flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal. Therefore, the canonical modal approach is poorly applicable to study such motions. In this case, the so-called nonmodal mathematical analysis is more adequate. Dynamic equations and equations for the energy transport of internal gravity perturbations in the ionosphere with shear flows are derived on the basis of the nonmodal approach. Exact analytic solutions of linear and nonlinear equations are found. The growth rate of the shear instability of internal gravity waves is determined. It is revealed that perturbations grow in time according to a power law, rather than exponentially. The frequency and wavenumber of the generated internal gravity modes depend on time; hence, a wide spectrum of wave perturbations caused by linear effects (rather than nonlinear turbulent ones) forms in the ionosphere with shear flows. The efficiency of the linear mechanism for the amplification of internal gravity waves during their interaction with the inhomogeneous zonal wind is analyzed. A criterion for the development of the shear instability of such waves in the ionospheric plasma is obtained. It is shown that, in the presence of shear instability, internal gravity waves extract the shear flow energy in the initial (linear) stage of their evolution, due to which their amplitude and, accordingly, energy increase substantially (by an order of magnitude). As the amplitude increases, the mechanism of nonlinear self-localization comes into play and the process terminates with the self-organization of strongly localized solitary nonlinear internal gravity vortex structures. As a result, a new degree of freedom of the system and a new way of the evolution of perturbations in a medium with a shear flow appear. Inductive and viscous dampings limit the lifetime of vortex internal gravity structures in the ionosphere; nevertheless, their lifetime is long enough for them to strongly affect the dynamic properties of the medium. It is revealed on the basis of the analytic solution of a set of time-independent nonlinear dynamic equations that, depending on the velocity profile of the shear flow, the nonlinear internal gravity structures can take the form of a purely monopole vortex, a dipole cyclone-anticyclone pair, a transverse vortex chain, or a longitudinal vortex path against the background of the inhomogeneous zonal wind. The accumulation of such vortices in the ionosphere can result in a strongly turbulent state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Francis, J. Atmos. Terr. Phys. 37, 1011 (1975).

    Article  ADS  Google Scholar 

  2. J. Kim and L. Mahrt, J. Atmos. Sci. 49, 735 (1992).

    Article  ADS  Google Scholar 

  3. T. Nakamura, T. Tsuda, M. Yamamoto, et al., J. Geophys. Res. 98, 8899 (1993).

    Article  ADS  Google Scholar 

  4. H. Rishbeth and S. Fukao, J. Geomagn. Geoelectr. 47, 621 (1995).

    Article  Google Scholar 

  5. D. C. Fritts, D. Janches, D. M. Riggin, et al., J. Geophys. Res. 111, D18108 (2006).

    Article  ADS  Google Scholar 

  6. M. J. Alexander, J. Gille, C. Cavanaugh, et al., J. Geophys. Res. 113, D15S18 (2008).

    Article  ADS  Google Scholar 

  7. M. J. Alexander, Geophys. Monogr. Ser. 190, 109 (2010).

    Article  Google Scholar 

  8. J. H. Hecht, M. J. Alexander, R. L. Walterscheid, et al., J. Geophys. Res. A 114, D18123 (2009).

    Article  ADS  Google Scholar 

  9. N. M. Gavrilov and S. Fukao, J. Atmos. Solar-Terr. Phys. 63, 931 (2001).

    Article  ADS  Google Scholar 

  10. M. J. Alexander and K. H. Rosenlof, J. Geophys. Res 108, 4597 (2003).

    Article  Google Scholar 

  11. M. J. Alexander, M. Geller, C. McLandress, et al., Quart. J. Royal Meteorol. Soc. 136, 1103 (2010).

    Google Scholar 

  12. V. A. Liperovskii, O. A. Pokhotelov, and S. A. Shalimov, Ionospheric Precursors of Earthquakes (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  13. Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Ed. by M. Hayakawa (Terra Scientific, Tokyo 1999).

    Google Scholar 

  14. K. Cheng and Y.-N. Huang, J. Geophys. Res. 97, 16995 (1991).

    Article  ADS  Google Scholar 

  15. J. Testud, J. Atmos. Terr. Phys. 32, 1793 (1970).

    Article  ADS  Google Scholar 

  16. G. S. Golitsyn, N. N. Romanova, and E. P. Chunchuzov, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 12, 319 (1975).

    Google Scholar 

  17. M. A. Kuester, M. J. Alexander, and E. A. Ray, J. Atmos. Sci. 65, 3231 (2008).

    Article  ADS  Google Scholar 

  18. F. C. Ming, Z. Chen, and F. Roux, Ann. Geophys. 28, 531 (2010).

    Article  ADS  Google Scholar 

  19. G. Chimonas and C. O. Hines, J. Geophys. Res. 76, 703 (1971).

    Google Scholar 

  20. F. Bertin, J. Testud, L. Kerby, and P. Rees, J. Atmos. Terr. Phys. 40, 1161 (1978).

    Article  ADS  Google Scholar 

  21. V. P. Burmaka, L. S. Kostrov, and L. F. Chernogor, Radiofiz. Radioastron. 8(2), 143 (2003).

    Google Scholar 

  22. O. A. Pokhotelov, M. Parrot, E. N. Fedorov, et al., Ann. Geophys. 13, 1197 (1995).

    Article  ADS  Google Scholar 

  23. G. Chimonas and C. O. Hines, Planet. Space Sci. 18, 565 (1970).

    Article  ADS  Google Scholar 

  24. I. Tolstoy and T. J. Herron, J. Atmos. Sci. 27, 55 (1970).

    Article  ADS  Google Scholar 

  25. V. I. Drobzhev, G. F. Molotov, M. P. Rudina, et al., Ionosfer. Issled., No. 39, 61 (1986).

  26. D. L. Shaeffer, D. R. Rock, J. P. Lewis, and S. I. Warshaw, UCRL Technical Report No. UCRL-ID-133240 (Lawrence Livermore Laboratory, Livermore, CA, 1999), http://www.osti.gov/energycitations/purl.cover.jsp?purl=/12544-yMgtTh/native/

    Google Scholar 

  27. P. K. Rastogi, J. Atmos. Terr. Phys. 43, 511 (1981).

    Article  ADS  Google Scholar 

  28. B. N. Gershman, Ionosphere Plasma Dynamics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  29. V. P. Dokuchaev, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 5, 783 (1959).

  30. C. O. Hines and C. A. Reddy, J. Geophys. Res. 72, 1015 (1967).

    Article  ADS  Google Scholar 

  31. G. D. Aburjania and A. G. Khantadze, Geomagn. Aeron. 42, 245 (2002).

    Google Scholar 

  32. G. D. Aburjania, Kh. Z. Chargazia, G. V. Jandieri, and O. A. Kharshiladze, Planet. Space Sci. 53, 881 (2005).

    Article  ADS  Google Scholar 

  33. G. D. Aburjania, A. G. Khantadze, and O. A. Kharshiladze, J. Geophys. Res. 111, A09304 (2006).

    Article  ADS  Google Scholar 

  34. E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

    Google Scholar 

  35. E. S. Kazimirovskii and V. D. Kokourov, Motions in the Ionosphere (Nauka, Novosibsrsk, 1979) [in Russian].

    Google Scholar 

  36. J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  37. S. C. Reddy, P. J. Schmid, and D. S. Hennigson, SIAM. J. Appl. Mat. 53, 15 (1993).

    Article  MATH  Google Scholar 

  38. L. N. Trefenthen, A. E. Trefenthen, S. C. Reddy, and T. A. Driscoll, Science 261, 578 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  39. A. D. D. Graik and W. O. Criminale, Proc. Roy. Soc. London, Ser. A 406, 13 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  40. G. D. Chagelishvili, A. D. Rogava, and D. G. Tsiklauri, Phys. Rev. E 53, 6028 (1996).

    Article  ADS  Google Scholar 

  41. C. O. Hines, Can. J. Phys. 38, 1441 (1960).

    Article  ADS  Google Scholar 

  42. G. D. Aburjania, Plasma Phys. Rep. 22, 864 (1996).

    ADS  Google Scholar 

  43. G. D. Aburjania, Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  44. R. L. Waterscheid and G. Schubert, J. Atmos. Sci. 47, 101 (1990).

    Article  ADS  Google Scholar 

  45. M. Friedrich, K. M. Torkar, W. Singer, et al., Ann. Geophys. 27, 823 (2009).

    Article  ADS  Google Scholar 

  46. R. W. Schunk and J. J. Sojka, J. Atmos. Terr. Phys. 58, 1527 (1996).

    Article  ADS  Google Scholar 

  47. Handbook of the Solar-Terrestrial Environment, Ed. by Y. Kamide and A. Chian (Springer-Verlag, Berlin, 2007).

    Google Scholar 

  48. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasmas (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  49. A. Gill, Atmosphere-Ocean Dynamics (Academic, New York, 1982; Mir, Moscow, 1986), Vol. 1.

    Google Scholar 

  50. A. B. Mikhailovskii, Theory of Plasma Instabilities (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974), Vol. 2.

    Google Scholar 

  51. G. S. Golitsyn, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1(2), 136 (1965).

    Google Scholar 

  52. R. J. Murgatroyd, Proc. Roy. Soc. London, Ser. A 288, 575 (1965).

    Article  ADS  Google Scholar 

  53. H. G. Mayr, I. Harris, F. A. Herrero, et al., Space Sci. Rev. 54, 297 (1990).

    Article  ADS  Google Scholar 

  54. K. Magnus, Schwingungen (Teubner, Stuttgart, 1961; Mir, Moscow, 1982).

    MATH  Google Scholar 

  55. Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  56. V. M. Chmyrev and V. M. Sorokin, J. Atmos. Solar-Terr. Phys. 72, 992 (2010).

    Article  ADS  Google Scholar 

  57. A. V. Timofeev, Resonance Phenomena in Plasma Oscillations (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  58. C.-C. Lin, The Theory of Hydrodynamic Stability (Cambridge University Press, Cambridge, 1955; Inostrannaya Literatura, Moscow, 1958).

    MATH  Google Scholar 

  59. Intense Atmospheric Vortices, Ed. by L. Bengtsson and J. Lighthill (Springer-Verlag, New York, 1982; Mir, Moscow, 1985).

    Google Scholar 

  60. V. M. Chmyrev, V. A. Marchenko, O. A. Pokhotelov, et al., Planet. Space Sci. 39, 1025 (1991).

    Article  ADS  Google Scholar 

  61. M. V. Nezlin, Chaos 4, 187 (1994).

    Article  ADS  Google Scholar 

  62. D. Sundkvist, A. Vaivads, M. Andre, et al., Ann. Geophys. 23, 983 (2005).

    Article  ADS  Google Scholar 

  63. Ocean Phsics, Vol. 2: Ocean Hydrodynamics, Ed. by V. M. Kamenkovich and A. S. Monin (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  64. G. P. Williams and T. Yamagata, J. Atmos. Sci. 41, 453 (1984).

    Article  ADS  Google Scholar 

  65. M. V. Nezlin and G. P. Chernikov, Plasma Phys. Rep. 21, 922 (1995).

    ADS  Google Scholar 

  66. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

    MATH  Google Scholar 

  67. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989; Gordon & Breach, Reading, MA, 1992).

    Google Scholar 

  68. R. Mallier and S. A. Maslowe, Phys. Fluids A 5, 1074 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. G. D. Aburjania, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 47, 491 (2011).

    Google Scholar 

  70. G. D. Aburjania, Kh. Z. Chargazia, L. M. Zeleny, and G. Zimbardo, Nonlin. Proc. Geophys. 16, 11 (2009).

    Article  ADS  Google Scholar 

  71. V. D. Larichev and G. M. Reznik, Sov. Phys. Doklady 21, 581 (1976).

    Google Scholar 

  72. Yu. A. Stepanyants and A. L. Fabrikant, Sov. Phys. JETP 75, 818 (1992).

    Google Scholar 

  73. T. D. Kaladze, O. A. Pokhotelov, H. A. Shah, et al., J. Atmos. Solar-Terr. Phys. 70, 1607 (2008).

    Article  ADS  Google Scholar 

  74. L. Stenflo and Yu. A. Stepaniants, Ann. Geophys. 13, 973 (1995).

    Article  ADS  Google Scholar 

  75. D. Jovanovic, L. Stenflo, and P. K. Shukla, Nonlin. Proc. Geophys. 9, 333 (2002).

    Article  ADS  Google Scholar 

  76. L. Stenflo, Phys. Fluids 30, 3297 (1987).

    Article  ADS  MATH  Google Scholar 

  77. M. K. Ramamurthy, B. P. Collins, R. M. Rauber, et al., Nature 348, 314 (1990).

    Article  ADS  Google Scholar 

  78. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (Nauka, Moscow, 1967; MIT Press, Cambridge, MA, 1971, 1975), Vol. 2.

    Google Scholar 

  79. G. D. Aburjania and G. Z. Machabeli, J. Geophys. Res. A 103, 9441 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Aburjania.

Additional information

Original Russian Text © G.D. Aburjania, G. Zimbardo, O.A. Kharshiladze, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 12, pp. 1055–1075.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aburjania, G.D., Zimbardo, G. & Kharshiladze, O.A. Effect of the shear flow in the generation and self-organization of internal gravity wave structures in the dissipative ionosphere. Plasma Phys. Rep. 38, 972–990 (2012). https://doi.org/10.1134/S1063780X1212001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1212001X

Keywords

Navigation