Plasma Physics Reports

, Volume 38, Issue 11, pp 851–862 | Cite as

Use of additional helium puffing for the diagnostics of plasma parameters at the FT-2 tokamak

  • S. I. Lashkul
  • A. B. Altukhov
  • V. V. D’yachenko
  • L. A. Esipov
  • M. Yu. Kantor
  • D. V. Kuprienko
  • A. D. Lebedev
  • Ya. A. Nikerman
  • A. Yu. Popov


The experiments carried out at the FT-2 tokamak in which additional pulsed puffing of helium into the hydrogen plasma was used for diagnostic purposes are considered. To estimate the necessary content of helium ions in the experiments on studying short-scale plasma oscillations, the ionization-recombination balance was simulated numerically under the assumption of a toroidally homogeneous influx of the working gas onto the boundary of the plasma column. In these simulations, the effective density of the neutral gas incident on the plasma boundary was determined by the iteration method, which made it possible to provide agreement between the obtained solution and the experimental discharge conditions. In particular, the correspondence of the determined admixture content to both the plasma quasineutrality condition and the value of the effective charge Z eff, as well as agreement between the calculated and measured plasma density profiles, was ensured. The simulations were performed under the assumption of anomalous diffusion coefficients for all plasma components. The temporal variations of the ionization-recombination balance were checked by comparing them with the measured spectra of radiation in the HeI, HeII, and Hα lines. In the current drive experiments, variations in n e (r) at the discharge periphery were examined by the method based on the proportionality of the intensity ratio of the helium spectral lines, HeI(668 nm)/HeI(728 nm), to the plasma density. In these calculations, the factors relating the intensity ratio of these lines to the plasma density were taken from the literature on spectral diagnostics.


Plasma Physic Report Plasma Column Hydrogen Plasma Ohmic Heating Plasma Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Field, P. G. Carolan, N. J. Conway, and M. G. O’Mullane, Rev. Sci. Instrum. 70, 355 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    I. D. Paton, PhD Thesis (University of Strathclyde, Glasgow, 2005),
  3. 3.
    D. G. Whyte, D. A. Humphreys, and P. L. Taylor, Phys. Plasmas 7, 4052 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    E. Hintz and B. Schweer, Plasma Phys. Controlled Fusion 37, A87 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    J.-W. Ahn, D. Craig, G. Fiksel, et al., Phys. Plasmas 14, 083301 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    S. J. Davies and P. D. Morgan, Nucl. Mater. 241–243, 426 (1997).Google Scholar
  7. 7.
    Y. Andrew, S. J. Davies, D. Elder, et al., Nucl. Mater. 266–269, 1234 (1999).CrossRefGoogle Scholar
  8. 8.
    H. Kubo, M. Goto, H. Takenaga, et al., Plasma Fusion Res. 75, 945 (1999).CrossRefGoogle Scholar
  9. 9.
    B. Branas, D. Tafalla, F. L. Tabares, and P. Ortiz, Rev. Sci. Instrum. 72, 602 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    M. Goto, J. Quant. Spectrosc. Radiat. Transfer 76, 331 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    E. de la Cal, Plasma Phys. Controlled Fusion 43, 813 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    F. B. Rosmej, N. Ohno, S. Takamura, and S. Kajita, Contrib. Plasma Phys. 48, 243 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    R. J. Maqueda, G. A. Wurden, D. P. Stotler, et al., Rev. Sci. Instrum. 74, 2020 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    M. Proschek, S. Menhart, H. D. Falter, et al., Preprint No. EFDA-JET-PR(00)13 (2000).Google Scholar
  15. 15.
    J.-W. Ahn, D. Craig, G. Fiksel, et al., Phys. Plasmas 14, 083301 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. G. Frank, V. P. Gavrilenko, N. P. Kyrie, and E. Oks, J. Phys. B 39, 5119 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    M. Goto, S. Morita, K. Sawada, et al., Phys. Plasmas 10, 1402 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    K. Saito, R. Kumazawa, T. Mutoh, et al., Nucl. Fusion 41, 1021 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    S. I. Lashkul, A. B. Altukhov, V. V. Bulanin, et al., in Proceedings of the 7th International Workshop “Strong Microwaves: Sources and Applications,” Ed. by A. G. Litvak (Inst. of Applied Physics, Russ. Acad. Sci., Nizhny Novgorod, 2009), Vol. 2, p. 312.Google Scholar
  20. 20.
    S. I. Lashkul, A. B. Altukhov, A. D. Gurchenko, et al., Plasma Phys. Rep. 36, 751 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    A. D. Gurchenko, E. Z. Gusakov, D. V. Kouprienko, et al., Plasma Phys. Controlled Fusion 52, 035010 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    A. D. Gurchenko, E. Z. Gusakov, A. B. Altukhov, et al., in Proceedings of the 38th EPS Conference on Controlled Fusion and Plasma Physics, Strasbourg, 2011, p. 2.127.Google Scholar
  23. 23.
    A. D. Gurchenko, E. Z. Gusakov, S. I. Lashkul, et al., in Proceedings of the 38th EPS Conference on Controlled Fusion and Plasma Physics, Strasbourg, 2011, p. 2.128.Google Scholar
  24. 24.
    Yu. N. Dnestrovskij and D. P. Kostomarov, Numerical Simulation of Plasmas (Nauka, Moscow, 1982; Springer-Verlag, New York, 1986).Google Scholar
  25. 25.
  26. 26.
    D. V. Kuprienko, A. B. Altukhov, A. D. Gurchenko, et al., Plasma Phys. Rep. 36, 371 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980), Sect. 9.8.Google Scholar
  28. 28.
    M. Yu. Kantor, L. A. Esipov, D. V. Kouprienko, et al., in Proceedings of the 13th International Symposium on Laser-Aided Plasma Diagnostics, Takayama, 2007, p. 104.Google Scholar
  29. 29.
    B. Schweer, Trans. Fusion Sci. Technol. 49, 404 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. I. Lashkul
    • 1
  • A. B. Altukhov
    • 1
  • V. V. D’yachenko
    • 1
  • L. A. Esipov
    • 1
  • M. Yu. Kantor
    • 1
  • D. V. Kuprienko
    • 1
  • A. D. Lebedev
    • 1
  • Ya. A. Nikerman
    • 2
  • A. Yu. Popov
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations