Skip to main content
Log in

Fusion modes of an axially symmetrical mirror trap with the high power injection of fast particles

  • Plasma Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We analyzed the energy balance of a fusion system based on an axially symmetrical open trap. In the considered system, the injection of high-energy (fast) particles is the main source of plasma external heating. Simulation of physical kinetics of the injected particles is based on the numerical solution of the Fokker-Planck equation taking into account scattering into the domain of losses and participation in the fusion reactions. Despite the considerable energy losses of the injected particles when leaving the trap due to the angular scattering, the considered system is sufficiently effective to be used as a source of neutrals for the hybrid (fusion-fission) reactor. The principle possibility of achieving a power amplification of Q pl ≈ 1 in plasma was demonstrated in operation modes with high neutron yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. V. P. Pastukhov, Nucl. Fusion 14, 3 (1974).

    Article  Google Scholar 

  2. R. H. Cohen, M. E. Rensink, T. A. Cutler, and A. A. Mirin, Nucl. Fusion 18, 1229 (1978).

    Article  ADS  Google Scholar 

  3. T. D. Rognlien and T. A. Cutler, Nucl. Fusion 20, 1003 (1980).

    Article  ADS  Google Scholar 

  4. V. V. Mirnov and D. D. Ryutov, Sov. Tech. Phys. Lett. 5, 266 (1979).

    Google Scholar 

  5. V. V. Mirnov and D. D. Ryutov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 57 (1980).

  6. P. A. Bagryansky, A. A. Ivanov, E. P. Kruglyakov, et al., Fusion Eng. Des. 70, 13 (2004).

    Article  Google Scholar 

  7. A. V. Anikeev, P. A. Bagryansky, A. A. Ivanov, et al., Fusion Energy 26, 103 (2007).

    Article  Google Scholar 

  8. G. I. Dimov, Preprint No. 97-65 (Budker Inst. of Nuclear Physics, Siberian Branch, Russ. Acad. Sci., Novosibirsk, 1997).

  9. M. S. Ioffe and B. B. Kadomtsev, Usp. Fiz. Nauk 100, 601 (1970).

    Google Scholar 

  10. A. D. Beklemishev and M. S. Chashchin, Plasma Phys. Rep. 34, 422 (2008).

    Article  ADS  Google Scholar 

  11. E. A. Sorokina, Fiz. Plazmy 35, 472 (2009).

    Google Scholar 

  12. A. Mase, J. H. Jeong, A. Itakura, et al., Phys. Rev. Lett. 64, 2281 (1990).

    Article  ADS  Google Scholar 

  13. A. Mase, A. Itakura, M. Inutake, et al., Nucl. Fusion 31, 1725 (1991).

    Article  Google Scholar 

  14. G. F. Bogdanov, I. N. Golovin, Yu. A. Kucheryaev, and D. A. Panov, Nucl. Fusion Suppl., Pt. 1, 215 (1962).

  15. C. C. Damm, J. H. Foote, A. H. Futch, et al., Phys. Fluids 8, 1472 (1965).

    Article  ADS  Google Scholar 

  16. A. N. Karpushov, Preprint No. 96-84 (Budker Inst. of Nuclear Physics, Siberian Branch, Russ. Acad. Sci., Novosibirsk, 1996).

  17. V. I. Khvesyuk and A. Yu. Chirkov, Pis’ma Zh. Tekh. Fiz. 26(21), 61 (2000).

    Google Scholar 

  18. A. Yu. Chirkov and V. I. Khvesyuk, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 55 (2003).

  19. A. Yu. Chirkov, Fiz.-Khim. Kinet. Gaz. Dinam. 11 (2011), http://www.chemphys.edu.ru/media/files/2011-02-01-029-Chirkov.pdf

  20. C. F. F. Karney, Comp. Phys. Rep. 4, 183 (1986).

    Article  ADS  Google Scholar 

  21. M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107, 1 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. B. A. Trubnikov, Sov. Phys. JETP 7, 926 (1958).

    Google Scholar 

  23. J. J. Devaney and M. L. Stein, Nucl. Sci. Eng. 46, 323 (1971).

    Google Scholar 

  24. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

    Google Scholar 

  25. S. V. Putvinskii, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Energoatomizdat, Moscow, 1990; Consultants Bureau, New York, 1992), Vol. 18.

    Google Scholar 

  26. V. V. Maximov, A. V. Anikeev, P. A. Bagryansky, et al., Nucl. Fusion 44, 542 (2004).

    Article  ADS  Google Scholar 

  27. K. Miyamoto, Fundamentals of Plasma Physics and Controlled Fusion (University of Tokyo, Tokyo, 2001; Fizmatlit, Moscow, 2007).

    Google Scholar 

  28. M. V. Krivosheev, A. V. Izotova, E. V. Seko, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 29 (1989).

  29. B. V. Kuteev and V. I. Khripunov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 3 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Chirkov.

Additional information

Original Russian Text © A.Yu. Chirkov, S.V. Ryzhkov, P.A. Bagryansky, A.V. Anikeev, 2011, published in Prikladnaya Fizika, 2011, No. 5, pp. 57–63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, A.Y., Ryzhkov, S.V., Bagryansky, P.A. et al. Fusion modes of an axially symmetrical mirror trap with the high power injection of fast particles. Plasma Phys. Rep. 38, 1025–1031 (2012). https://doi.org/10.1134/S1063780X12080090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12080090

Keywords

Navigation