Skip to main content
Log in

Exact solutions for oblique solitary Alfvén waves in plasma

  • Nonlinear Structures
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The properties of solitary Alfvén waves are studied for different ratios between the thermal plasma pressure and the magnetic pressure. It is shown that the wave propagation is accompanied by the generation of a nonlinear ion current along the magnetic field, the contribution of which to the Sagdeev potential was previously ignored. An expression for the quasi-potential of Alfvén waves with allowance for this effect is derived. It is found that Alfvén waves are compression waves in the inertial limit, whereas kinetic Alfvén waves are rarefaction waves. In a high-pressure plasma, a solitary wave has the form of either a well or a hump in the plasma density, depending on the relations between the Mach number, angle between the wave propagation direction and the magnetic field, and the value of the plasma beta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla, H. D. Rahman, and R. P. Sharma, J. Plasma Phys. 28, 125 (1982).

    Article  ADS  Google Scholar 

  2. M. K. Kalita and B. C. Kalita, J. Plasma Phys. 35, 267 (1986).

    Article  ADS  Google Scholar 

  3. D.-J. Wu, D.-Y. Wang, and C.-J. Felthammer, Phys. Plasmas 2, 4476 (1995).

    Article  ADS  Google Scholar 

  4. Y. Chen, Z.-Y. Li, W. Liu, et al., Phys. Plasmas 7, 371 (2000).

    Article  ADS  Google Scholar 

  5. A. Hasegawa and K. Mima, Phys. Rev. Lett. 37, 690 (1976).

    Article  ADS  Google Scholar 

  6. M. Y. Yu and P. K. Shukla, Phys. Fluids 21, 1457 (1978).

    Article  ADS  Google Scholar 

  7. M. Berthomier and R. Potellette, Phys. Plasmas 6, 467 (1999).

    Article  ADS  Google Scholar 

  8. M. A. Mahmood, A. M. Mirza, P. H. Sakanaka, et al., Phys. Plasmas 9, 3794 (2002).

    Article  ADS  Google Scholar 

  9. C. R. Choi and D.-Y. Lee, Phys. Plasmas 14, 052304 (2007).

    Article  ADS  Google Scholar 

  10. M. H. Woo, C. M. Ryu, and C. R. Choi, Phys. Plasmas 17, 053707 (2010).

    Article  ADS  Google Scholar 

  11. H. Kakati and K. S. Goswami, Phys. Plasmas 5, 4229 (1998).

    Article  ADS  Google Scholar 

  12. H. Saleem and S. Mahmood, Phys. Plasmas 10, 2612 (2003).

    Article  ADS  Google Scholar 

  13. S. Mahmood and H. Saleem, Phys. Plasmas 10, 4860 (2003).

    Google Scholar 

  14. O. P. Sah, Phys. Plasmas 17, 032306 (2010).

    Article  ADS  Google Scholar 

  15. C. E. Seyler and R. L. Lysak, Phys. Plasmas 6, 4778 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Devi, R. Gogoi, G. C. Das, et al., Phys. Plasmas 14, 012107.

  17. P. Chatterjee, T. Saha, S. V. Muniandy, et al., Phys. Plasmas 16, 103702 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Prudskikh, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 8, pp. 709–715.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudskikh, V.V. Exact solutions for oblique solitary Alfvén waves in plasma. Plasma Phys. Rep. 38, 651–657 (2012). https://doi.org/10.1134/S1063780X12070082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12070082

Keywords

Navigation