Skip to main content
Log in

Effect of hydrogen ratio on plasma parameters of N2-H2 gas mixture glow discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).

    Google Scholar 

  2. J. D. Swifts, Brit. J. Appl. Phys. 16, 837 (1965).

    Article  ADS  Google Scholar 

  3. E. E. Mainwaring and J. D. Swifts, J. Phys. D 5, 1433 (1972).

    Article  ADS  Google Scholar 

  4. M. Noguchi, T. Hirao, M. Shindo, et al., Plasma Sources Sci. Technol. 12, 403 (2003).

    Article  ADS  Google Scholar 

  5. N. Sugai, H. Foyoda, K. Naicano, and N. Isomura, Plasma Sources Sci. Technol. 4, 366 (1995).

    Article  ADS  Google Scholar 

  6. S. M. Borah, H. Bailung, A. R. Pal, and J. Chutia, J. Phys. D 41, 195205 (2008).

    Article  ADS  Google Scholar 

  7. F. F. Elakshar, M. A. Hassouba, and A. A. Garamoon, Fizika A 9, 177 (2000).

    ADS  Google Scholar 

  8. Sh. Al-Hawat and M. Naddaf, J. Phys. D 38, 1156 (2005).

    Article  ADS  Google Scholar 

  9. Yu. M. Kagan, C. Cohen, and P. Avivi, J. Appl. Phys. 63, 60 (1988).

    Article  ADS  Google Scholar 

  10. W. H. Tao and H. K. Yasuda, Plasma Chem. Plasma Process. 22, 297 (2002).

    Article  Google Scholar 

  11. S. D. Popa, J. Phys. D 29, 416 (1996).

    Article  ADS  Google Scholar 

  12. E. E. Granda-Gutiérrez, R. López-Callejas, R. Peña-Eguiluz, et al., J. Phys. Conf. Ser. 100, 062019 (2008).

    Article  ADS  Google Scholar 

  13. G. A. Hebner, P. A. Miller, and J. R. Woodworth, Handbook of Advanced Plasma Processing Techniques, Ed. by R. J. Shul and S. J. Pearton (Springer, New York, 2000).

    Google Scholar 

  14. J. R. Roth, Industrial Plasma Engineering, Vol. 1: Principles (IOP, Bristol, 1995).

    Google Scholar 

  15. H. Amemiya, J. Phys. Soc. Jpn. 66, 1335 (1997).

    Article  ADS  Google Scholar 

  16. M. Konuma, Film Deposition by Plasma Technology (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  17. Plasma Diagnostics Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965; Mir, Moscow, 1967).

    Google Scholar 

  18. J. R. Roth, Industrial Plasma Engineering, Vol. 2: Applications to Nonthermal Plasma Processing (IOP, Bristol, 2001).

    Google Scholar 

  19. Tsv. K. Popov, M. Dimitrova, and F. M. Dias, Vacuum 76, 417 (2004).

    Article  Google Scholar 

  20. J. D. Swift and M. J. R. Schwar, Electrical Probes for Plasma Diagnostics (LIFFE, London, 1970).

    Google Scholar 

  21. A. Qayyum, M. A. Naveed, S. Zeb, et al., Plasma Sci. Technol. 9, 463 (2007).

    Article  ADS  Google Scholar 

  22. V. A. Godyak and V. I. Demidov, J. Phys. D 44, 233001 (2011).

    Article  ADS  Google Scholar 

  23. D. Maric, K. Kutasi, G. Malovic, et al., Eur. Phys. J. D 21, 73 (2002).

    Article  ADS  Google Scholar 

  24. D. Akbar and S. Bilikmen, Chin. Phys. Lett. 23, 1234 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fizika Plazmy, 2012, Vol. 38, No. 5, pp. 473–480.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Brulsy, R.A., Abd Al-Halim, M.A., Abu-Hashem, A. et al. Effect of hydrogen ratio on plasma parameters of N2-H2 gas mixture glow discharge. Plasma Phys. Rep. 38, 432–438 (2012). https://doi.org/10.1134/S1063780X12050042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12050042

Keywords

Navigation