Skip to main content
Log in

Experimental study of toroidal Alfvén modes in the Globus-M spherical tokamak

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In the experiments carried out on the Globus-M tokamak in regimes with injection of 26-keV neutral beams with a power of 0.75–0.85 MW, two branches of instabilities excited by fast ions were observed in the early stage of a discharge: a low-frequency energetic particle mode (EPM) in the frequency range of 5–30 kHz and a high-frequency mode in the range of 50–200 kHz, identified as a toroidal Alfvén eigenmode (TAE). The TAE developed in the initial phase of the discharge at q(0) > 1 and terminated when sawtooth oscillations were excited at q(0) < 1. The spectrum and spatial localization of the mode agree with predictions of the linear theory. The modes observed in the Globus-M tokamak possess both properties common to other tokamaks and their own specific features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITER Physics Expert Group on Energetic Particles, Heating, and Current Drive and ITER Physics Basis Editors, Nucl. Fusion 39, 2471 (1999).

    Google Scholar 

  2. A. Fasoli, C. Gormenzano, H.L. Berk, et al., Nucl. Fusion 47, S264 (2007).

    Article  ADS  Google Scholar 

  3. R. Nazikian, G. Y. Fu, S. H. Batha, et al., Phys. Rev. Lett. 78, 2976 (1997).

    Article  ADS  Google Scholar 

  4. M. P. Petrov, R. Bell, R. V. Budny, et al., Phys. Plasmas 6, 2430 (1999).

    Article  ADS  Google Scholar 

  5. M. Ono, S. M. Kaye, and Y.-K. Peng, Nucl. Fusion 40, 557 (2000).

    Article  ADS  Google Scholar 

  6. N. N. Gorelenkov and E. Belova, Phys. Plasmas 11, 2586 (2004).

    Article  ADS  Google Scholar 

  7. N. A. Crocker, W. A. Peebles, S. Kubota, et al., Phys. Rev. Lett. 97, 045002 (2006).

    Article  ADS  Google Scholar 

  8. N. A. Crocker, E. D. Fredrickson, N. N. Gorelenkov, et al., Phys. Plasmas 15, 102502 (2008).

    Article  ADS  Google Scholar 

  9. M. Podesta, W. W. Heidbrink, D. Liu, et al., Phys. Plasmas 16, 056104 (2009).

    Article  ADS  Google Scholar 

  10. E. D. Fredrickson, N. A. Crocker, R. E. Bell, et al., Phys. Plasmas 16, 122505 (2009).

    Article  ADS  Google Scholar 

  11. M. P. Gryaznevich and S. E. Sharapov, Plasma Phys. Controlled Fusion 46, 15 (2004).

    Article  ADS  Google Scholar 

  12. S. D. Pinches, H. L. Berk, M. P. Gryaznevich, et al., Plasma Phys. Controlled Fusion 46, 47 (2004).

    Article  ADS  Google Scholar 

  13. M. P. Gryaznevich and S. E. Sharapov, Nucl. Fusion 48, 084003 (2008).

    Article  ADS  Google Scholar 

  14. V. K. Gusev, V. E. Golant, E. Z. Gusakov, et al., Zh. Tekh. Fiz. 69(9), 58 (1999) [Tech. Phys. 44, 1054 (1999)].

    Google Scholar 

  15. V. K. Gusev, A. V. Dech, L. A. Esipov, et al., Zh. Tekh. Fiz. 77(9), 28 (2007) [Tech. Phys. 52, 1121 (2007)].

    Google Scholar 

  16. F. V. Chernyshev, V. I. Afanas’ev, V. K. Gusev, et al., Fiz. Plazmy 37, 595 (2011) [Plasma Phys. Rep. 37, 553 (2011)].

    Google Scholar 

  17. K. McGuire and R. Goldstone, Phys. Rev. Lett. 50, 891 (1983).

    Article  ADS  Google Scholar 

  18. E. D. Fredrickson, C. Z. Cheng, D. Darrow, et al., Phys. Plasmas 10, 2852 (2003).

    Article  ADS  Google Scholar 

  19. L. L. Lao, H. John, R. D. Stambaugh, et al., Nucl. Fusion 25, 1611 (1985).

    Article  Google Scholar 

  20. V. K. Gusev, S. E. Bender, A. V. Dech, et al., Zh. Tekh. Fiz. 76(8), 25 (2006) [Tech. Phys. 51, 987 (2006)].

    Google Scholar 

  21. E. D. Fredrickson, R. E. Bell, D. S. Darrow, et al., Phys. Plasmas 13, 056109 (2006).

    Article  ADS  Google Scholar 

  22. C. Z. Cheng and M. S. Chance, Phys. Fluids 11, 3695 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.V. Petrov, M.I. Patrov, V.K. Gusev, A.E. Ivanov, V.B. Minaev, N.V. Sakharov, S.Yu. Tolstyakov, G.S. Kurskiev, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 12, pp. 1075–1080.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, Y.V., Patrov, M.I., Gusev, V.K. et al. Experimental study of toroidal Alfvén modes in the Globus-M spherical tokamak. Plasma Phys. Rep. 37, 1001–1005 (2011). https://doi.org/10.1134/S1063780X11110067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11110067

Keywords

Navigation