Skip to main content
Log in

Runaway electron beams in the gas discharge for UV nitrogen laser excitation

  • Plasma-Beam Processes
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The review of the methods for obtaining the runaway electron beams in the gas discharge is performed. The new method is offered, using which the beam is first formed in a narrow gap (∼1 mm) between the cathode and the grid and then it is accelerated by the field of the plasma column of the anomalous self-sustained discharge in the main gap (10–20 mm long). The electron beams with an energy of about 10 keV and current density of 103 A/cm2 at a molecular nitrogen pressure of up to 100 Torr have been obtained experimentally. The results of research of the UV nitrogen laser with an excitation via runaway electron beam and radiation of energy of ∼1 mJ are given. The UV nitrogen laser generation with the energy of ∼1 mJ has been obtained by the runaway electron beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Baranov, A. V. Astakhov, and A. K. Zinchenko, High-Power Technological CO 2 Laser Complexes Based on a Self-Sustained Transverse Discharge (Izd-vo Politekh. Univ., St. Petersburg, 2005) [in Russian].

    Google Scholar 

  2. D. Basting, Excimer Laser Technology (Lambda Physik, Guttingen, 2001).

    Google Scholar 

  3. W. R. Bennett, IEEE J. Select. Topics Quantum Electron. 6, 869 (2000).

    Article  Google Scholar 

  4. W. Brunner and K. Junge, Wissenspeicher Lasertechnik (VEB Fachbuchverlag, Leipzig, 1987, Energoatomizdat, Moscow, 1991).

    Google Scholar 

  5. I. A. Scherbakov, in Proceedings of the 9th Topical Meeting on Advanced Solid-State Lasers, Salt Lake City, UT, 1994.

  6. E. M. Dianov, Usp. Fiz. Nauk 174, 1139 (2004) [Phys. Usp. 47, 1065 (2004)].

    Article  Google Scholar 

  7. S. Woods, M. Duka, and G. Flinn, Fotonika, No. 4, 6 (2008).

  8. S. Vayler, Fotonika, No. 3, 10 (2009).

  9. M. A. El-Osealy, T. Ido, K. Nakamura, et al., Opt. Comm. 194, 191 (2001).

    Article  ADS  Google Scholar 

  10. M. A. El-Osealy, T. Jitsuno, K. Nakamura, et al., Opt. Comm. 207, 255 (2002).

    Article  ADS  Google Scholar 

  11. V. V. Apollonov and V. A. Yamshchikov, Kvant. Elektron. 32, 183 (2002) [Quant. Electron. 32, 183 (2002)].

    Article  ADS  Google Scholar 

  12. V. V. Apollonov and V. A. Yamshchikov, International Forum on Advanced High-Power Lasers and Application, Osaka, 1999, Technical Digest, p. 102.

  13. V. V. Apollonov and V. A. Yamshchikov, International Conference LASERS’99, Quebec, 1999, Technical Digest, p. 3.

  14. V. V. Apollonov and V. A. Yamshchikov, in Proceedings of the International Conference on Lasers, Society for Optical and Quantum Electronics, 1999, p. 94.

  15. V. V. Apollonov and V. A. Yamshchikov, Proc. SPIE 3889, 739 (2000).

    Article  ADS  Google Scholar 

  16. V. V. Apollonov and V. A. Yamshchikov, in Proceedings of the III International Conference on Plasma Physics and Plasma Technologies, Minsk, 2000, Vol. 2, p. 672.

  17. G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed Gas Lasers (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  18. M. Kakehata, T. Uematsu, F. Kannari, and M. Obara, IEEE J. Quant. Electron. 27, 2456 (1991).

    Article  ADS  Google Scholar 

  19. P. A. Bokhan and A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 8, 947 (1982) [Sov. Tech. Phys. Lett. 8, 408 (1982)].

    Google Scholar 

  20. G. V. Kolbychev and E. A. Samyshkin, Kvant. Elektron. 10, 437 (1983) [Quant. Electron. 13, 249 (1983)].

    Google Scholar 

  21. P. A. Bokhan and A. R. Sorokin, Opt. Quant. Electron. 23, 523 (1991).

    Article  Google Scholar 

  22. S. V. Arlantsev, B. L. Borovich, L. E. Golubev, et al., Kvant. Elektron. 21, 824 (1994) [Quant. Electron. 24, 766 (1994)].

    Google Scholar 

  23. P. A. Bokhan and A. R. Sorokin, Zh. Tekh. Fiz. 55, 88 (1985) [Sov. Phys. Tech. Phys. 30, 50 (1985)].

    Google Scholar 

  24. S. V. Arlantsev, B. L. Borovich, V. V. Buchanov, et al., J. Russ. Laser Res. 16(2), 99 (1995).

    Article  Google Scholar 

  25. H. M. J. Bastiaens, PhD Thesis (Univ. of Twente, Netherlands, 2000).

  26. L. P. Babich and Yu. L. Stankevich, Zh. Tekh. Fiz. 42, 1669 (1972) [Sov. Phys. Tech. Phys. 17, 1333 (1972)].

    Google Scholar 

  27. A. I. Pavlovskii, L. P. Babich, T. V. Loiko, and L. V. Tarasova, Dokl. AN SSSR 281, 1359 (1985) [Sov. Phys. Doklady 30, 303 (1985)].

    Google Scholar 

  28. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Usp. Fiz. Nauk 160, 49 (1990) [Sov. Phys. Usp. 33, 521 (1990)].

    Article  Google Scholar 

  29. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Usp. Fiz. Nauk 164, 263 (1994) [Phys. Usp. 37, 247 (1994)].

    Article  Google Scholar 

  30. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and A. S. Rodionov, Kvant. Elektron. 22, 1207 (1995) [Quant. Electron. 25, 1170 (1995)].

    Google Scholar 

  31. V. F. Tarasenko and S. I. Yakovlenko, Plasma Dev. Oper. 13, 231 (2005).

    Article  Google Scholar 

  32. E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, Pis’ma Zh. Tekh. Fiz. 32(21), 69 (2006) [Tech. Phys. Lett. 32, 948 (2006)].

    Google Scholar 

  33. E. Kh. Baksht, V. F. Tarasenko, M. I. Lomaev, and D. V. Rybka, Pis’ma Zh. Tekh. Fiz. 33(9), 29 (2007) [Tech. Phys. Lett. 33, 373 (2007)].

    Google Scholar 

  34. E. Kh. Baksht, A. G. Burachenko, M. I. Lomaev, et al., Zh. Tekh. Fiz. 78(1), 98 (2008) [Tech. Phys. 53, 93 (2008)].

    Google Scholar 

  35. G. A. Mesyats, S. D. Korovin, K. A. Sharypov, et al., Pis’ma Zh. Tekh. Fiz. 32(1), 35 (2006) [Tech. Phys. Lett. 32, 18 (2006)].

    Google Scholar 

  36. V. B. Bratchikov, K. A. Gagarinov, I. D. Kostyrya, et al., Zh. Tekh. Fiz. 77(7), 34 (2007) [Tech. Phys. 52, 856 (2007)].

    Google Scholar 

  37. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, et al., Zh. Tekh. Fiz. 80(2), 51 (2010) [Tech. Phys. 55, 210 (2010)].

    Google Scholar 

  38. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 17(23), 92 (1991) [Sov. Tech. Phys. Lett. 17, 858 (1991)].

    Google Scholar 

  39. A. R. Sorokin and P. A. Bokhan, Pis’ma Zh. Tekh. Fiz. 20(17), 86 (1994) [Tech. Phys. Lett. 20, 720 (1994)].

    Google Scholar 

  40. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 21(20), 37 (1995) [Tech. Phys. Lett. 21, 832 (1995)].

    Google Scholar 

  41. V. F. Oreshkin, A. M. Seregin, V. V. Sinaiskii, et al., Kvant. Elektron. 33, 1043 (2003) [Quant. Electron. 33, 1043 (2003)].

    Article  ADS  Google Scholar 

  42. G. V. Kolbychev and E. A. Samyshkin, Zh. Tekh. Fiz. 51, 2032 (1981) [Sov. Phys. Tech. Phys. 26, 1185 (1981)].

    Google Scholar 

  43. G. V. Kolbychev and I. V. Ptashnik, Pis’ma Zh. Tekh. Fiz. 11, 1106 (1985) [Sov. Tech. Phys. Lett. 11, 458 (1985)].

    Google Scholar 

  44. A. R. Sorokin, Zh. Tekh. Fiz. 65(5), 198 (1995) [Tech. Phys. 40, 517 (1995)].

    MathSciNet  Google Scholar 

  45. P. A. Bokhan, Zh. Tekh. Fiz. 61(6), 61 (1991) [Sov. Phys. Tech. Phys. 36, 620 (1991)].

    Google Scholar 

  46. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 21(20), 37 (1995) [Tech. Phys. Lett. 21, 832 (1995)].

    Google Scholar 

  47. A. R. Sorokin, Zh. Tekh. Fiz. 68(3), 33 (1998) [Tech. Phys. 43, 296 (1998)].

    MathSciNet  Google Scholar 

  48. K. A. Klimenko and Yu. D. Korolev, Zh. Tekh. Fiz. 60(9), 138 (1990) [Sov. Phys. Tech. Phys. 35, 1084 (1990)].

    Google Scholar 

  49. A. P. Bokhan and P. A. Bokhan, Pis’ma Zh. Tekh. Fiz. 27(6), 7 (2001) [Tech. Phys. Lett. 27, 220 (2001)].

    Google Scholar 

  50. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  51. V. A. Danilychev, O. M. Kerimov, and I. B. Kovsh, Tr. FIAN 85, 49 (1976).

    Google Scholar 

  52. Yu. I. Bychkov, Yu. D. Korolev, G. A. Mesyats, et al., Injection Gas Electronics (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  53. L. P. Babich, T. V. Loiko, and L. V. Tarasova, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 20, 637 (1977).

    Google Scholar 

  54. V. V. Apollonov and V. A. Yamshchikov, Kvant. Elektron. 24, 483 (1997) [Quant. Electron. 27, 469 (1997)].

    Google Scholar 

  55. R. T. Hodgson and R. W. Dreyfus, Phys. Lett. A 38, 213 (1972).

    Article  ADS  Google Scholar 

  56. E. L. Patterson, J. B. Gerardo, and A. Wayne Johnson, Appl. Phys. Lett. 21, 293 (1972).

    Article  ADS  Google Scholar 

  57. E. L. Patterson, J. Appl. Phys. 44, 3193 (1973).

    Article  ADS  Google Scholar 

  58. B. M. Berkeliev, V. A. Dolgikh, I. G. Rudoi, et al., Kvant. Elektron. 15, 2169 (1988) [Quant. Electron. 18, 1361 (1988)].

    Google Scholar 

  59. B. M. Berkeliev, V. A. Dolgikh, I. G. Rudoi, and A. M. Soroka, Kvant. Elektron. 18, 280 (1991) [Quant. Electron. 21, 250 (1991)].

    Google Scholar 

  60. M. Berkeliev, V. A. Dolgikh, I. G. Rudoi, et al., Kvant. Elektron. 17, 1135 (1990) [Quant. Electron. 20, 1045 (1990)].

    Google Scholar 

  61. V. Yu. Khomich and V. A. Yamshchikov, Preprint IEE RAN (Inst. of Electrophysics and Energetics, Russ. Acad. Sci., Moscow, 2007).

  62. V. Yu. Khomich, E. A. Shershunova, and V. A. Yamshchikov, in Proceedings of the XII International Conference on Laser Optics, St. Petersburg, 2006, p. 45.

  63. V. Yu. Khomich and V. A. Yamshchikov, Issled. Ross. 9, 1414 (2006), http://zhurnal.gpi.ru/articles/2006/152.pdf.

    Google Scholar 

  64. S. K. Vartapetov, A. A. Zhigalkin, K. E. Lapshin, et al., Kvant. Elektron. 36, 393 (2006) [Quant. Electron. 36, 393 (2006)].

    Article  ADS  Google Scholar 

  65. M. Kakehata, T. Uematsu, F. Kannari, and M. Obara, IEEE J. Quant. Electron. 27, 2456 (1991).

    Article  ADS  Google Scholar 

  66. T. Kitamura, Y. Arita, K. Maeda, et al., Appl. Phys. 81, 2523 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Yamschikov.

Additional information

Original Russian Text © V.Yu. Khomich, V.A. Yamschikov, 2010, published in Prikladnaya Fizika, 2010, No. 6, pp. 77–88.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khomich, V.Y., Yamschikov, V.A. Runaway electron beams in the gas discharge for UV nitrogen laser excitation. Plasma Phys. Rep. 37, 1145–1155 (2011). https://doi.org/10.1134/S1063780X11070099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11070099

Keywords

Navigation