Skip to main content
Log in

Simulation of oscillatory processes in a beam-plasma system with a virtual cathode in gas-filled interaction space

  • Beams in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Physical processes occurring in an intense electron beam with a virtual cathode in an interaction space filled with neutral gas are studied in a two-dimensional model. A mathematical model is proposed for investigating complicated self-consistent processes of neutral gas ionization by the beam electrons and the dynamics of an electron beam and heavy positive ions in the common space charge field with allowance for the two-dimensional motion of charged particles. Three characteristic dynamic regimes of the system are revealed: complete suppression of oscillations of the virtual cathode as a result of neutralizing its space charge by positive ions; the pulsed generation regime, in which the ions dynamics repeatedly suppresses and restores the virtual cathode oscillations; and the continuous generation regime with an anomalously high level of noisy oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. High-Power Microwave Sources (Artech House Microwave Library), Ed. by V. L. Granatstein and I. Alexeff (Artech House, Boston, 1987).

    Google Scholar 

  2. D. I. Trubetskov and A. E. Hramov, Lectures on Microwave Electronics for Physicists (Fizmatlit, Moscow, 2004), Vol. 2 [in Russian].

    Google Scholar 

  3. A. A. Rukhadze, S. D. Stolbetsov, and V. P. Tarakanov, Radiotekh. Elektron. 37, 385 (1992).

    ADS  Google Scholar 

  4. A. E. Dubinov and V. D. Selemir, Radiotekh. Elektron. 47, 575 (2002) [J. Comm. Technol. Electron. 47, 575 (2002)].

    Google Scholar 

  5. J. Benford, J. A. Swegle, and E. Schamiloglu, High-Power Microwaves (CRC Press, Boca Raton, 2007).

    Google Scholar 

  6. S. A. Kurkin, A. A. Koronovskii, and A. E. Hramov, Fiz. Plazmy 35, 684 (2009) [Plasma Phys. Rep. 35, 628 (2009)].

    Google Scholar 

  7. R. A. Mahaffey, P. A. Sprangle, J. Golden, and C. A. Kapetanakos, Phys. Rev. Lett. 39, 843 (1977).

    Article  ADS  Google Scholar 

  8. T. Intrator, M. H. Cho, E. Y. Wang, et al., J. Appl. Phys. 64, 2927 (1988).

    Article  ADS  Google Scholar 

  9. D. I. Trubetskov and A. E. Hramov, Lectures on Microwave Electronics for Physicists (Fizmatlit, Moscow, 2003, 2004), Vols. 1, 2 [in Russian].

    Google Scholar 

  10. W. Jiang, K. Masugata, and K. Yatsui, Phys. Plasmas 2, 982 (1995).

    Article  ADS  Google Scholar 

  11. W. Jiang, K. Masugata, and K. Yatsui, Phys. Plasmas 2, 4635 (1995).

    Article  ADS  Google Scholar 

  12. T. L. Lin, W. T. Chen, W. C. Liu, and Y. Hu, J. Appl. Phys. 68, 2038 (1990).

    Article  ADS  Google Scholar 

  13. E. K. Kolesnikov, A. S. Manuilov, and B. V. Filippov, Dynamics of Charged Particle Beams in Gas-Plasma Media (SPbGU, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  14. Yu. A. Kalinin, A. A. Koronovskii, A. E. Hramov, et al., Fiz. Plazmy 31, 1009 (2005) [Plasma Phys. Rep. 31, 938 (2005)].

    Google Scholar 

  15. J. R. Pierce, J. Appl. Phys. 15, 721 (1944).

    Article  ADS  Google Scholar 

  16. B. B. Godfrey, Phys. Fluids 30, 1553 (1987).

    Article  ADS  Google Scholar 

  17. S. Kuhn and A. Ender, J. Appl. Phys. 68, 732 (1990).

    Article  Google Scholar 

  18. H. Kolinsky and H. Shamel, Phys. Rev. E 52, 4267 (1995).

    Article  ADS  Google Scholar 

  19. X. Chen and P. A. Lindsay, IEEE Trans. Plasma Sci. 24, 1005 (1996).

    Article  ADS  Google Scholar 

  20. H. Matsumoto, H. Yokoyama, and D. Summers, Phys. Plasmas 3, 177 (1996).

    Article  ADS  Google Scholar 

  21. M. S. Hur, H. J. Lee, and J. K. Lee, Phys. Rev. E 58, 936 (1998).

    Article  ADS  Google Scholar 

  22. H. Friedel, R. Grauer, and H. K. Spatschek, Phys. Plasmas 5, 3187 (1998).

    Article  ADS  Google Scholar 

  23. P. V. Akimov, H. Schamel, H. Kolinsky, et al., Phys. Plasmas 8, 3788 (2001).

    Article  ADS  Google Scholar 

  24. A. E. Hramov and I. S. Rempen, Int. J. Electron. 91, 1 (2004).

    Article  Google Scholar 

  25. A. Ender, V. I. Kuznetsov, H. Shamel, and P. V. Akimov, Phys. Plasmas 11, 3212 (2004).

    Article  ADS  Google Scholar 

  26. A. E. Hramov, A. A. Koronovskii, and I. S. Rempen, Chaos 16, 013123 (2006).

    Article  ADS  Google Scholar 

  27. R. A. Filatov, A. E. Hramov, and A. A. Koronovskii, Phys. Lett. A 358, 301 (2006).

    Article  ADS  MATH  Google Scholar 

  28. A. E. Filatova, A. E. Hramov, A. A. Koronovskii, and S. Boccaletti, Chaos 18, 023133 (2008).

    Article  ADS  Google Scholar 

  29. A. A. Koronovskii and A. E. Hramov, Fiz. Plazmy 28, 722 (2002) [Plasma Phys. Rep. 28, 666 (2002)].

    Google Scholar 

  30. V. G. Anfinogentov and A. E. Hramov, Izv. Akad. Nauk 62, 2428 (1998).

    Google Scholar 

  31. V. N. Shevchik, G. N. Shvedov, and A. N. Soboleva, UHF Wave and Oscillation Phenomena in Electron Flows (Saratov Univ., Saratov, 1962) [in Russian].

    Google Scholar 

  32. A. A. Plyutto, P. E. Belensov, E. D. Koron, et al., Pis’ma Zh. Eksp. Teor. Fiz. 6, 540 (1967) [JETP Lett. 6, 61 (1967)].

    Google Scholar 

  33. R. B. Miller, in Collective Methods of Acceleration, Ed. by N. Rostoker and M. Reiser (Harwood Academic, Geneva, 1979), p. 675.

    Google Scholar 

  34. W. W. Destler, L. E. Floyd, and M. Reiser, Phys. Rev. Lett. 44, 70 (1977).

    Article  ADS  Google Scholar 

  35. T. M. Burinskaya and A. S. Volokitin, Fiz. Plazmy 10, 989 (1984) [Sov. J. Plasma Phys. 10, 567 (1984)].

    Google Scholar 

  36. R. L. Yao and C. D. Striffler, J. Appl. Phys. 67, 1650 (1990).

    Article  ADS  Google Scholar 

  37. M. Galvez and G. Gisler, J. Appl. Phys. 69, 129 (1991).

    Article  ADS  Google Scholar 

  38. V. A. Balakirev, A. V. Gorban’, I. I. Magda, et al., Fiz. Plazmy 23, 350 (1997) [Plasma Phys. Rep. 23, 323 (1997)].

    Google Scholar 

  39. A. E. Dubinov, I. Yu. Kornilova, and V. D. Selemir, Usp. Fiz. Nauk 172, 1225 (2002) [Phys. Usp. 45, 1109 (2002)].

    Article  Google Scholar 

  40. V. D. Selemir, A. E. Dubinov, B. G. Ptitsyn, et al., Pis’ma Zh. Tekh. Fiz. 27(22), 73 (2001) [Tech. Phys. Lett. 27, 967 (2001)].

    Google Scholar 

  41. A. E. Dubinov, Teplofiz. Vys. Temp. 42, 676 (2004) [High Temp. 42, 675 (2004)].

    Google Scholar 

  42. R. A. Filatov, A. E. Hramov, Y. P. Bliokh, et al., Phys. Plasmas 16, 033106 (2009).

    Article  ADS  Google Scholar 

  43. I. G. Gverdtsiteli, V. Ya. Karakhanov, E. A. Kashirskii, et al., Zh. Tekh. Fiz. 42, 103 (1972) [Sov. Phys. Tech. Phys. 17, 78 (1972)].

    Google Scholar 

  44. V. I. Kuznetsov and A. Ya. Ender, Zh. Tekh. Fiz. 53, 2329 (1983) [Sov. Phys. Tech. Phys. 28, 1431 (1983)].

    Google Scholar 

  45. E. N. Egorov, Yu. A. Kalinin, Yu. I. Levin, et al., Izv. Akad. Nauk, Ser. Phys. 69, 1724 (2005).

    Google Scholar 

  46. Yu. A. Kalinin and A. E. Hramov, Zh. Tekh. Fiz. 76(5), 25 (2006) [Tech. Phys. 51, 558 (2006)].

    Google Scholar 

  47. A. E. Hramov, A. A. Koronovskii, and P. V. Popov, Phys. Rev. E 72, 037201 (2005).

    Article  ADS  Google Scholar 

  48. A. E. Hramov, A. A. Koronovskii, and S. A. Kurkin, Phys. Lett. A 374, 3057 (2010).

    Article  ADS  Google Scholar 

  49. A. A. Koronovskii, D. I. Trubetskov, and A. E. Hramov, Methods of Nonlinear Dynamics and Chaos in Problems of Microwave Electronics (Fizmatlit, Moscow, 2009), Vol. 2 [in Russian].

    Google Scholar 

  50. E. N. Egorov, Yu. A. Kalinin, A. A. Koronovskii, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 49, 843 (2006) [Radiophys. Quant. Electron. 49, 760 (2006)].

    Google Scholar 

  51. E. N. Egorov, Yu. A. Kalinin, A. A. Koronovskii, et al., Pis’ma Zh. Tekh. Fiz. 32(9), 71 (2006) [Tech. Phys. Lett. 32, 402 (2006)].

    Google Scholar 

  52. E. N. Egorov, Yu. A. Kalinin, A. A. Koronovskii, and A. E. Hramov, Zh. Tekh. Fiz. 77(10), 139 (2007) [Tech. Phys. 52, 1387 (2007)].

    Google Scholar 

  53. T. M. Anderson, A. A. Mondelli, B. Levush, et al., Proc. IEEE 87, 804 (1999).

    Article  Google Scholar 

  54. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; Energoatomizdat, Moscow, 1989).

    Google Scholar 

  55. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).

    Google Scholar 

  56. L. A. Sena, Electron and Ion Collisions with Gas Atoms (OGIZ, Leningrad, 1948) [in Russian].

    Google Scholar 

  57. V. G. Makhan’kov and Yu. G. Pollyak, Zh. Tekh. Fiz. 46, 439 (1976) [Sov. Phys. Tech. Phys. 21, 250 (1976)].

    Google Scholar 

  58. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976; Mir, Moscow, 1980)

    Google Scholar 

  59. V. P. Il’in, Numerical Methods for Solving Electrophysical Problems (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  60. V. M. Sveshnikov, Prikl. Fiz. 1, 50 (2004).

    Google Scholar 

  61. I. V. Alyamovskii, Electron Beams and Electron Guns (Sovetskoe Radio, Moscow, 1966) [in Russian].

    Google Scholar 

  62. Y. Carmel, A. Shkvarunets, G. S. Nusinovich, et al., Phys. Plasmas 10, 4865 (2003).

    Article  ADS  Google Scholar 

  63. Y. P. Bliokh and G. S. Nusinovich, Phys. Plasmas 13, 023102 (2006).

    Article  ADS  Google Scholar 

  64. Y. P. Bliokh, G. S. Nusinovich, J. Rodgers, et al., IEEE Trans. Plasma Sci. 36, 701 (2008).

    Article  ADS  Google Scholar 

  65. V. I. Volosov and B. Chirikov, Zh. Tekh. Fiz. 27, 2624 (1957) [Sov. Phys. Tech. Phys. 2, 2437 (1958)].

    Google Scholar 

  66. O. Lloyd, Brit. J. Appl. Phys. 17, 357 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.A. Filatov, A.E. Hramov, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 5, pp. 429–443.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filatov, R.A., Hramov, A.E. Simulation of oscillatory processes in a beam-plasma system with a virtual cathode in gas-filled interaction space. Plasma Phys. Rep. 37, 395–408 (2011). https://doi.org/10.1134/S1063780X11040040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11040040

Keywords

Navigation