Skip to main content
Log in

Diagnostics of plasma produced by femtosecond laser pulse impact upon a target with an internal nanostructure

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

X-ray diagnostics of the interaction of femtosecond laser pulses with intensities of 1016–1018 W/cm2 with CO2 clusters and frozen nanosize water particles is carried out. The stage of cluster expansion and the formation of a plasma channel, which governs the parameters of the formed X-ray radiation source and accelerated ion flows, is studied. The measurements are based on recording spatially resolved X-ray spectra of H- and He-like oxygen ions. Utilization of Rydberg transitions for spectra diagnostics makes it possible to determine plasma parameters on a time scale of t ∼ 10 ps after the beginning of a femtosecond pulse. The role of the rear edge of the laser pulse in sustaining the plasma temperature at a level of ∼100 eV in the stage of a nonadiabatic cluster expansion is shown. The analysis of the profiles and relative intensities of spectral lines allows one to determine the temperature and density of plasma electrons and distinguish the populations of “thermal” ions and ions that are accelerated up to energies of a few tens of kiloelectronvolts. It is shown that the use of solid clusters made of frozen nanoscale water droplets as targets leads to a substantial increase in the number of fast He-like ions. In this case, however, the efficiency of acceleration of H-like ions does not increase, because the time of their ionization in plasma exceeds the time of cluster expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ditmire, J. W. G. Tisch, E. Springate, et al., Phys. Rev. Lett. 78, 2732 (1997).

    Article  ADS  Google Scholar 

  2. J. Zweiback, R. A. Smith, T. E. Cowan, et al., Phys. Rev. Lett. 84, 2634 (2000).

    Article  ADS  Google Scholar 

  3. K. Y. Kim, H. M. Milchberg, A. Ya. Faenov, et al., Phys. Rev. E 73, 066 403 (2006).

    Google Scholar 

  4. T. Palchan, S. Pecker, Z. Henis, et al., Appl. Phys. Lett. 90, 041501 (2007).

    Article  ADS  Google Scholar 

  5. K. P. Stevenson, G. A. Kimmel, Z. Dohnalek, et al., Science 283, 1505 (1999).

    Article  ADS  Google Scholar 

  6. A. McPherson, T. S. Luk, B. D. Thompson, et al., Phys. Rev. Lett. 72, 1810 (1994).

    Article  ADS  Google Scholar 

  7. T. Ditmire, T. Donnelly, A. M. Rubenchik, et al., Phys. Rev. A 53, 3379 (1996).

    Article  ADS  Google Scholar 

  8. T. Ditmire, J. Zwelback, V. P. Yanovsky, et al., Nature 398, 489 (1999).

    Article  ADS  Google Scholar 

  9. E. Parra, T. Alexeev, J. Fan, et al., Phys. Rev. E 62, R5931 (2000).

    Article  ADS  Google Scholar 

  10. J. Abdallah, G. Csanak, Y. Fukuda, et al., Phys. Rev. A 68, 063201 (2003).

    Article  ADS  Google Scholar 

  11. M. E. Sherrill, J. Abdallah, G. Csanak, et al., Phys. Rev. E 73, 066404 (2006).

    Article  ADS  Google Scholar 

  12. K. Y. Kim, V. Kumarappan, H. Milchberg, et al., Phys. Rev. E 78, 066463 (2008).

    Google Scholar 

  13. M. Mori, T. Shiraishi, E. Takahashi, et al., J. Appl. Phys. 90, 3595 (2001).

    Article  ADS  Google Scholar 

  14. M. B. Smirnov, I. Yu. Skobelev, A. I. Magunov, et al., Zh. Éksp. Teor. Fiz. 125, 1283 (2004) [JETP 98, 1123 (2004)].

    Google Scholar 

  15. A. Ya. Faenov, S. A. Pikuz, A. I. Erko, et al., Phys. Scr. 50, 333 (1994).

    Article  ADS  Google Scholar 

  16. A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, et al., Laser Part. Beams 25, 267 (2007).

    Article  ADS  Google Scholar 

  17. Y. Fukuda, Y. Kishimoto, T. Masaki, and K. Yamakawa, Phys. Rev. A 73, 031201 (2004).

    Article  ADS  Google Scholar 

  18. G. C. Junkel-Vives, J. Abdallah, F. Blasco, et al., Phys. Rev. A 66, 033204 (2002).

    Article  ADS  Google Scholar 

  19. Y. Fukuda, K. Yamakawa, Y. Akakhane, et al., Pis’ma Zh. Éksp. Teor. Fiz. 78, 146 (2003) [JETP Lett. 78, 115 (2003)].

    Google Scholar 

  20. Y. Fukuda, Y. Akahane, M. Aoyama, et al., Laser Part. Beams 22, 215 (2004).

    Article  ADS  Google Scholar 

  21. G. C. Junkel-Vives, J. Abdallah, F. Blasco, et al., Phys. Rev. A 64, 021201 (2001).

    Article  ADS  Google Scholar 

  22. T. Auguste, P. Oliveira, S. Hulin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 72, 54 (2000) [JETP Lett. 72, 38 (2000)].

    Google Scholar 

  23. A. I. Magunov, T. A. Pikuz, I. Yu. Skobelev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 412 (2001) [JETP Lett. 74, 375 (2001)].

    Google Scholar 

  24. J. Abdallah, A. Ya. Faenov, I. Yu. Skobelev, et al., Phys. Rev. A 63, 032706 (2001).

    Article  ADS  Google Scholar 

  25. A. I. Magunov, A. Ya. Faenov, I. Yu. Skobelev, et al., Zh. Éksp. Teor. Fiz. 122, 1158 (2002) [JETP 95, 998 (2002)].

    Google Scholar 

  26. G. C. Junkel-Vives, Jr. J. Abdallah, T. Auguste, et al., Phys. Rev. E 65, 036410 (2002).

    Article  ADS  Google Scholar 

  27. I. Yu. Skobelev, A. Ya. Faenov, A. I. Magunov, et al., Zh. Éksp. Teor. Fiz. 121, 88 (2002) [JETP 94, 73 (2002)].

    Google Scholar 

  28. A. I. Magunov, A. Ya. Faenov, I. Yu. Skobelev, et al., Laser. Part. Beams 21, 73 (2003).

    Article  ADS  Google Scholar 

  29. F. Dorchies, T. Caillaud, F. Blasco, et al., Phys. Rev. E 71, 066410 (2005).

    Article  ADS  Google Scholar 

  30. H.-H. Chu, H.-E. Tsai, M.-C. Chou, et al., Phys. Rev. A 71, 061804 (2005).

    Article  ADS  Google Scholar 

  31. L. Willingale, S. P. D. Mangles, P. M. Nilson, et al., Phys. Rev. Lett. 96, 245002 (2006).

    Article  ADS  Google Scholar 

  32. V. Kumarappan, K. Y. Kim, and H. M. Milchberg, Phys. Rev. Lett. 94, 205004 (2005).

    Article  ADS  Google Scholar 

  33. Y. Fukuda, Y. Akahane, M. Aoyama, et al., Phys. Lett. A 363, 130 (2007).

    Article  ADS  Google Scholar 

  34. A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, et al., Pis’ma Zh. Éksp. Teor. Fiz. 86, 204 (2007) [JETP Lett. 86, 178 (2007)].

    Google Scholar 

  35. P. Monot, G. Doumy, S. Dobosz, et al., Opt. Lett. 29, 893 (2004).

  36. A. S. Boldarev, V. A. Gasilov, and A. Ya. Faenov, Zh. Tekh. Fiz. 74(4), 10 (2004) [Tech. Phys. 49, 388 (2004)].

    Google Scholar 

  37. A. S. Boldarev, V. A. Gasilov, A. Ya. Faenov, et al., Rev. Sci. Instrum. 77, 083112 (2006).

    Article  ADS  Google Scholar 

  38. T. Palchan, Z. Henis, A. Ya. Faenov, et al., Appl. Phys. Lett. 91, 251501 (2007).

    Article  ADS  Google Scholar 

  39. T. Shiraishi, M. Mori, and K. Kondo, Phys. Rev. A 65, 045201 (2002).

    Article  ADS  Google Scholar 

  40. Y. T. Li, Z. M. Sheng, Y. Y. Ma, et al., Phys. Rev. E 72, 066404 (2005).

    Article  ADS  Google Scholar 

  41. S. Bagchi, P. Prem Kiran, M. K. Bhuyan, et al., Appl. Phys. Lett. 90, 141502 (2007).

    Article  ADS  Google Scholar 

  42. T. Ditmire, T. Donnelly, A. M. Rubenchik, et al., Phys. Rev. A 53, 3379 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.Yu. Skobelev, A.Ya. Faenov, S.V. Gasilov, T.A. Pikuz, S.A. Pikuz Jr., A.I. Magunov, A.S. Boldarev, V.A. Gasilov 2009, published in Prikladnaya Fizika, 2009, No. 3, pp. 58–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skobelev, I.Y., Faenov, A.Y., Gasilov, S.V. et al. Diagnostics of plasma produced by femtosecond laser pulse impact upon a target with an internal nanostructure. Plasma Phys. Rep. 36, 1261–1268 (2010). https://doi.org/10.1134/S1063780X10130283

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10130283

Keywords

Navigation