Skip to main content
Log in

Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. II: Particle-in-cell simulations

  • Gas and Vacuum Discharges
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of particle-in-sell simulations of ion acceleration by using the KARAT code in a cylindrical geometry in the problem formulation corresponding to an actual experiment with a low-energy vacuum discharge with a hollow cathode are presented. The fundamental role of the formed virtual cathode is analyzed. The space-time dynamics of potential wells related to the formation of the virtual cathode is discussed. Quasi-steady potential wells (with a depth of ∼80% of the applied voltage) cause acceleration of deuterium ions to energies about the electron beam energy (∼50 keV). In the well, a quasi-isotropic velocity distribution function of fast ions forms. The results obtained are compared with available data on inertial electrostatic confinement fusion (IECF). In particular, similar correlations between the structure of potential wells and the neutron yield, as well as the scaling of the fusion power density, which increases with decreasing virtual cathode radius and increasing potential well depth, are considered. The chosen electrode configuration and potential well parameters provide power densities of nuclear DD fusion in a nanosecond vacuum discharge noticeably higher than those achieved in other similar IECF systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Kurilenkov, M. Skowronek, G. Louvet, et al., J. Phys. IV 10, 5 (2000); Yu. K. Kurilenkov and M. Skowronek, J. Phys. (Pramana, Indian Acad. Sci.) 61, 1188 (2003).

    Article  Google Scholar 

  2. Yu. K. Kurilenkov, M. Skowronek, and J. Dufty, J. Phys. A (IOP) 39, 4375 (2006); Yu. K. Kurilenkov and M. Skowronek, Prikl. Fiz., No. 3, 40 (2009).

    Article  ADS  Google Scholar 

  3. T. Ditmire, J. Zweiback, V. P. Yanovsky, et al., Nature (London) 398, 489 (1999); J. Zweiback, R. A. Smith, T. E. Cowan, et al., Phys. Rev. Lett. 84, 634 (2000).

    Article  ADS  Google Scholar 

  4. V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, VA, 1992).

    Google Scholar 

  5. A. E. Dubinov, I. Yu. Kornilov, and V. D. Selemir, Usp. Fiz. Nauk 172, 1225 (2002) [Phys. Usp. 45, 1109 (2002)].

    Article  Google Scholar 

  6. S. A. Barengol’ts, G. A. Mesyats, and E. A. Perel’shtein, Zh. Éksp. Teor. Fiz. 118, 1358 (2000) [JETP 91, 1176 (2000)].

    Google Scholar 

  7. A. A. Plyutto, Zh. Éksp. Teor. Fiz. 39, 1589 (1960) [Sov. Phys. JETP 12, 1106 (1961)]; A. A. Plyutto, Zh. Tekh. Fiz. 40, 2534 (1970) [Sov. Phys. Tech. Phys. 15, 1986 (1971)].

    Google Scholar 

  8. O. Lavrent’ev, Ukr. Fiz. Zh. 8, 440 (1963); B. D. Bondarenko, Usp. Fiz. Nauk 171, 886 (2001) [Phys. Usp. 44, 844 (2001)].

    Google Scholar 

  9. W. C. Elmore, J. L. Tuck, and K. M. Watson, Phys. Fluids 2, 239 (1959); R. L. Hirsch, J. Appl. Phys. 38, 4522 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Onishi, K. H. Sato, Y. Yamamoto, and K. Yoshikawa, Nucl. Fusion 37, 611 (1997).

    Article  ADS  Google Scholar 

  11. R. A. Nebel and D. C. Barnes, Fusion Technol. 38, 1998 (1998).

    Google Scholar 

  12. R. A. Nebel, S. Stange, J. Park, et al., Phys. Plasmas 12, 012701 (2005); J. Park, R. A. Nebel, S. Stange, and S. K. Murali, Phys. Plasmas 12, 056315 (2005).

    Article  ADS  Google Scholar 

  13. Yu. K. Bobrov, V. P. Bystrov, and A. A. Rukhadze, Kratk. Soobsh. Fiz., No. 7, 23 (2005) [Bull. Lebedev Phys. Inst., No. 7, 18 (2005)].

  14. Yu. K. Kurilenkov and M. Skowronek, in Physics of Extreme States of Matter 2004, Ed. by V. E. Fortov, V. P. Efremov, and K. V. Khishchenko (IPFKh RAN, Chernogolovka, 2004), p. 136 [in Russian]; Yu. K. Kurilenkov, M. Skowronek, V. P. Tarakanov, et al., J. Phys. A 42, 214041 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.K. Kurilenkov, V.P. Tarakanov, S.Yu. Gus’kov, 2009, published in Prikladnaya Fizika, 2009, No. 4, pp. 102–110.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurilenkov, Y.K., Tarakanov, V.P. & Gus’kov, S.Y. Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. II: Particle-in-cell simulations. Plasma Phys. Rep. 36, 1227–1234 (2010). https://doi.org/10.1134/S1063780X10130234

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10130234

Keywords

Navigation