Skip to main content
Log in

Similarity laws for cathode-directed streamers in gaps with an inhomogeneous field at elevated air pressures

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of cathode-directed streamers in the gap closure regime without a transition into spark breakdown. Spatiotemporal, electrodynamic, and spectroscopic characteristics of streamer discharges in air at different pressures were studied. Similarity laws for streamer discharges were formulated. These laws allow one to compare the discharge current characteristics and streamer propagation dynamics at different pressures. Substantial influence of gas photoionization on the deviations from the similarity laws was revealed. The existence of a pressure range in which the discharges develop in a similar way was demonstrated experimentally. In particular, for fixed values of the product pd and discharge voltage U, the average streamer velocity is also fixed. It is found that, although the similarity laws are violated in the interstreamer pause of the discharge, the average discharge current and the product of the pressure and the streamer repetition period remain the same at different pressures. The radiation spectra of the second positive system of nitrogen (the C3Π u -B3Π g transitions) in a wavelength range of 300–400 nm at air pressures of 1–3 atm were recorded. It is shown that, in the entire pressure range under study, the profiles of the observed radiation bands practically remain unchanged and the relative intensities of the spectral lines corresponding to the 3Π u -B3Π g transitions are preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Loeb and J. M. Meek, The Mechanism of Electric Spark (Stanford Univ. Press, Stanford, 1941).

    Google Scholar 

  2. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964; Mir, Moscow, 1968).

    Google Scholar 

  3. A. A. Rukhadze, N. N. Sobolev, and V. V. Sokovikov, Usp. Fiz. Nauk 161(9), 195 (1991) [Sov. Phys. Usp. 34, 827 (1991)].

    Google Scholar 

  4. S. Achat, Y. Teisseyre, and E. Marode, J. Phys. D 25, 661 (1992).

    Article  ADS  Google Scholar 

  5. P. Tardiveau, E. Marode, A. Agneray, and M. Cheaib, J. Phys. D 34, 1690 (2001).

    Article  ADS  Google Scholar 

  6. P. Tardiveau and E. Marode, J. Phys. D 36, 1204 (2003).

    Article  ADS  Google Scholar 

  7. E. M. van Veldhuizen, Electrical Discharges for Environmental Purposes: Fundamentals and Applications (Nova Science, New York, 2000).

    Google Scholar 

  8. V. I. Golota, O. V. Bolotov, B. B. Kadolin, et al., Vopr. At. Nauki Tekh., Ser. Plazmennaya Élektron. Novye Metody Uskoreniya, No. 4, 204 (2008).

  9. A. A. Kulikovsky, J. Phys. D 33, L3 (1999).

    Google Scholar 

  10. A. A. Kulikovsky, J. Phys. D 33, 1514 (2000).

    Article  ADS  Google Scholar 

  11. N. Liu and V. P. Pasko, J. Geophys. Res. 109, A04301 (2004).

    Article  Google Scholar 

  12. V. P. Pasko, U. S. Inan, and T. F. Bell, Geophys. Rev. Lett. 25, 2123 (1998).

    Article  ADS  Google Scholar 

  13. V. P. Pasko, Theoretical Modeling of Sprites and Jets (Kluwer, Dordrecht, 2006).

    Google Scholar 

  14. N. Yu. Babaeva and G. V. Naidis, Phys. Lett. A 215, 187 (1996).

    Article  ADS  Google Scholar 

  15. N. Yu. Babaeva and G. V. Naidis, J. Phys. D 29, 2423 (1996).

    Article  ADS  Google Scholar 

  16. N. Yu. Babaeva and G. V. Naidis, J. Electrostat. 53, 123 (2001).

    Article  Google Scholar 

  17. N. Y. Babaeva, A. N. Bhoj, and M. J. Kushner, in Proceedings of the 27th International Conference on Phenomena in Ionized Gases, Eindhoven, 2005, Paper 04-400.

  18. N. Yu. Babaeva and G. V. Naidis, IEEE Trans. Plasma Sci. 25, 375 (1997).

    Article  ADS  Google Scholar 

  19. A. A. Kulikovsky, IEEE Trans. Plasma Sci. 25, 439 (1997).

    Article  ADS  Google Scholar 

  20. A. A. Kulikovsky, J. Phys. D 30, 1515 (1997).

    Article  ADS  Google Scholar 

  21. A. A. Kulikovsky, Phys. Rev. E 57, 7066 (1998).

    Article  ADS  Google Scholar 

  22. A. A. Kulikovsky, IEEE Trans. Plasma Sci. 26, 1339 (1998).

    Article  ADS  Google Scholar 

  23. M. I. D’yakonov and V. Yu. Kachorovskii, Zh. Éksp. Teor. Fiz. 96, 1896 (1989) [Sov. Phys. JETP 69, 1070 (1989)].

    Google Scholar 

  24. M. V. Zheleznyak, A. Kh. Mnatsakanian, and S. V. Sizykh, High Temp. 20, 357 (1982).

    Google Scholar 

  25. T. H. Teich, Z. Phys. 199, 378 (1967).

    Article  ADS  Google Scholar 

  26. G. W. Penney and G. T. Hummert, J. Appl. Phys. 41, 572 (1970).

    Article  ADS  Google Scholar 

  27. R. J. Roth, Industrial Plasma Engineering, Vol. 1: Principles (Institute of Physics, Bristol, 1995).

    Google Scholar 

  28. N. Liu and V. P. Pasko, Geophys. Res. Lett. 32, L05 104 (2005).

    Google Scholar 

  29. G. V. Naidis, J. Phys. D 38, 2211 (2005).

    Article  ADS  Google Scholar 

  30. M. Arrayás, U. Ebert, and W. Hundsdorfer, Phys. Rev. Lett. 88, 174 502 (2002).

    Article  Google Scholar 

  31. U. Ebert, W. van Saarloos, and C. Caroli, Phys. Rev. E 55, 1530 (1997).

    Article  ADS  Google Scholar 

  32. W. J. Yi and P. F. Williams, J. Phys. D 35, 205 (2002).

    Article  ADS  Google Scholar 

  33. E. M. van Veldhuizen, P. C. M. Kemps, and W. R. Rutgers, IEEE Trans. Plasma Sci. 30, 162 (2002).

    Article  ADS  Google Scholar 

  34. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Y. Starikovskii, J. Phys. D 34, 105 (2001).

    Article  ADS  Google Scholar 

  35. T. M. P. Briels, E. M. Veldhuizen, and U. Ebert, J. Phys. D 41, 234 008 (2008).

    Google Scholar 

  36. T. M. P. Briels, G. J. J. Winands, E. M. van Veldhuizen, and U. Ebert, J. Phys. D 41, 234004 (2008).

    Article  ADS  Google Scholar 

  37. A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D 41, 234005 (2008).

    Article  ADS  Google Scholar 

  38. S. Nijdam, J. S. Moerman, T. M. P. Briels, et al., Appl. Phys. Lett. 92, 101502 (2008).

    Article  ADS  Google Scholar 

  39. T. M. P. Briels, E. M. van Veldhuizen, and U. Ebert, IEEE Trans. Plasma Sci. 36, 906 (2008).

    Article  ADS  Google Scholar 

  40. A. Luque, U. Ebert, and W. Hundsdorfer, Phys. Rev. Lett. 101, 075005 (2008).

    Article  ADS  Google Scholar 

  41. E. Marode, F. Bastien, and M. Bakker, J. Appl. Phys. 50, 140 (1979).

    Article  ADS  Google Scholar 

  42. F. Bastien and E. Marode, J. Phys. D 18, 377 (1985).

    Article  ADS  Google Scholar 

  43. A. Gibert and F. J. Bastien, J. Phys. D 22, 1078 (1989).

    Article  ADS  Google Scholar 

  44. P. Bayle, M. Bayle, and G. Forn, J. Phys. D 18, 2395 (1985).

    Article  ADS  Google Scholar 

  45. P. Bayle, M. Bayle, and G. Forn, J. Phys. D 18, 2417 (1985).

    Article  ADS  Google Scholar 

  46. E. A. Gerken and U. S. Inan, IEEE Trans. Plasma Sci. 33, 282 (2005).

    Article  ADS  Google Scholar 

  47. N. Liu and V. P. Pasko, J. Phys. D 39, 327 (2006).

    Article  ADS  Google Scholar 

  48. V. P. Pasko, Plasma Sources Sci. Technol. 16, 13 (2007).

    Article  ADS  Google Scholar 

  49. S. V. Pancheshnyi, M. Nudnova, and A. Y. Starikovskii, Phys. Rev. E 71, 016407 (2005).

    Article  ADS  Google Scholar 

  50. S. V. Pancheshnyi and A. Yu. Starikovskii, Plasma Sources Sci. Technol. 13, B1 (2004).

    Article  Google Scholar 

  51. S. V. Pancheshnyi and A. Yu. Starikovskii, J. Phys. D 36, 2683 (2003).

    Article  ADS  Google Scholar 

  52. T. M. P. Briels, E. M. van Veldhuizen, and U. Ebert, IEEE Trans. Plasma Sci. 33, 264 (2005).

    Article  ADS  Google Scholar 

  53. U. Ebert, C. Montijn, T. M. P. Briels, et al., Plasma Sources Sci. Technol. 15, S118 (2006).

    Article  ADS  Google Scholar 

  54. V. I. Golota, L. M. Zavada, B. B. Kadolin, et al., Vopr. At. Nauki Tekh., Ser. Plazmennaya Électron. Novye Metody Uskoreniya, No. 4, 258 (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Bolotov, V.I. Golota, B.B. Kadolin, V.I. Karas’, V.N. Ostroushko, L.M. Zavada, A.Yu. Shulika, 2010, published in Fizika Plazmy, 2010, Vol. 36, No. 11, pp. 1059–1072.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolotov, O.V., Golota, V.I., Kadolin, B.B. et al. Similarity laws for cathode-directed streamers in gaps with an inhomogeneous field at elevated air pressures. Plasma Phys. Rep. 36, 1000–1011 (2010). https://doi.org/10.1134/S1063780X10110097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10110097

Keywords

Navigation