Skip to main content
Log in

Radiation of nitrogen molecules in a dielectric barrier discharge with small additives of chlorine and bromine

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Spectral and energy characteristics of nitrogen molecule radiation in dielectric barrier discharges in Ar-N2, Ar-N2-Cl2, and Ar-N2-Br2 mixtures were investigated experimentally. Small additives of molecular chlorine or bromine to an Ar-N2 mixture are found to increase the radiation intensity of the second positive system of nitrogen. The conditions at which the radiation spectrum predominantly consists of vibronic bands of this system are determined. Using a numerical model of plasmachemical processes, it is shown that, at electron temperatures typical of gas discharges (2–4 eV), a minor additive of molecular chlorine to an Ar-N2 mixture leads to an increase in the concentrations of electrons, positive ions, and metastable argon atoms. In turn, collisional energy transfer from metastable argon atoms to nitrogen molecules results in the excitation of the N2(C 3Π u ) state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kaplan, Phys. Rev. 48(15), 8 (1935).

    Google Scholar 

  2. V. F. Tarasenko, Yu. A. Kurbatov, and Yu. I. Bychkov, Kvantovaya Élektron., No. 8, 84 (1972) [Quant. Electron. 2, 155 (1972)].

  3. N. G. Basov, A. N. Brunin, V. A. Danilychev, et al., Kvantovaya Élektron. 2, 2238 (1975) [Quant. Electron. 5, 1218 (1975)].

    Google Scholar 

  4. N. G. Basov and V. A. Danilychev, Usp. Fiz. Nauk 148,55 (1986) [Sov. Phys. Usp. 29, 31 (1986)].

    Google Scholar 

  5. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer-Verlag, Berlin, 1985).

    Google Scholar 

  6. V. F. Losev and V. F. Tarasenko, Zh. Tekh. Fiz. 46, 2202 (1976) [Sov. Phys. Tech. Phys. 21, 1295 (1976)].

    Google Scholar 

  7. V. F. Tarasenko, Kvantovaya Élektron. 31, 489 (2001) [Quant. Electron. 31, 489 (2001)].

    Article  Google Scholar 

  8. A. N. Panchenko, A. I. Suslov, V. F. Tarasenko, et al., Kvantovaya Élektron. 37, 433 (2007) [Quant. Electron. 37, 433 (2007)].

    Article  Google Scholar 

  9. A. K. Shuaibov, L. L. Shimon, A. I. Dashchenko, and I. V. Shevera, Pis’ma Zh. Tekh. Fiz. 27(9), 8 (2001) [Tech. Phys. Lett. 27, 354 (2001)].

    Google Scholar 

  10. A. Catherinot and A. Sy, Phys. Rev. A 20, 1511 (1979).

    Article  ADS  Google Scholar 

  11. O. R. Wulf and E. H. Melvin, Phys. Rev. 55, 687 (1939).

    Article  ADS  Google Scholar 

  12. M. J. Williamson, P. Bletzinger, and B. N. Ganguly, J. Phys. D 37, 1658 (2004).

    Article  ADS  Google Scholar 

  13. A. A. Lisenko, M. I. Lomaev, and V. F. Tarasenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 83 (2004).

  14. T. Repsilber, M. Baeva, and J. Uhlenbusch, Plasma Sources Sci. Technol. 13, 58 (2004).

    Article  ADS  Google Scholar 

  15. Yu. A. Lebedev, P. V. Solomakhin, and V. A. Shakhatov, Fiz. Plazmy 33, 180 (2007) [Plasma Phys. Rep. 33, 157 (2007)].

    Google Scholar 

  16. J. T. Fons, R. S. Schappe, and C. C. Lin, Phys. Rev. A 53, 2239 (1996).

    Article  ADS  Google Scholar 

  17. S. M. Avdeev and É. A. Sosnin, Opt. Spektrosk. 106, 14 (2009).

    Article  ADS  Google Scholar 

  18. E. Illenberg and B. M. Smirnov, Usp. Fiz. Nauk 168,731 (1998) [Phys. Usp. 41, 651 (1998)].

    Article  Google Scholar 

  19. L. S. Polak, M. Ya. Gol’denberg, and A. A. Levitskiĭ, Computational Methods in Chemical Kinetics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  20. M. Moravej, X. Yang, M. Barankin, J. Penelon, et al., Plasma Sources Sci. Technol. 15, 204 (2006).

    Article  ADS  Google Scholar 

  21. T. H. Johnson, H. E. Cartland, T. C. Genoni, et al., J. Appl. Phys. 66, 5707 (1989).

    Article  ADS  Google Scholar 

  22. P. F. Gruzdev, Transition Probabilities and Radiative Lifetimes of Atomic and Ionic Levels (Énergoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  23. N. L. Basset and D. J. Economou, J. Appl. Phys. 75,1931 (1994).

    Article  ADS  Google Scholar 

  24. E. G. Thorsteinsson, A. Th. Hjartarson, and J. T. Gudmundsson, Technical Report No. RH-16-2008 (Science Inst., University of Iceland, Reykjavik, 2008).

    Google Scholar 

  25. E. G. Thorsteinsson and J. T. Gudmundsson, Plasma Sources Sci. Technol. 19, 015001 (2010).

    Article  ADS  Google Scholar 

  26. M. A. Hassouba, Plasma Dev. Operat. 16, 81 (2008).

    Article  Google Scholar 

  27. L. Dong, Y. Qi, Z. Zhao, and Y. Li, Plasma Sources Sci. Technol. 17, 015015 (2008).

    Article  ADS  Google Scholar 

  28. S. V. Avtaeva and É. B. Kulumbaev, Fiz. Plazmy 34, 497 (2008) [Plasma Phys. Rep. 34, 452 (2008)].

    Google Scholar 

  29. A. Ionascut-Nedelcescu, C. Carlone, U. Kogelschatz, et al., J. Appl. Phys. 103, 063305 (2008).

    Article  ADS  Google Scholar 

  30. N. Masoud, K. Martus, and K. Becker, J. Phys. D 38,1674 (2005).

    Article  ADS  Google Scholar 

  31. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).

    Article  Google Scholar 

  32. V. T. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  33. S. V. Avtaeva, Barrier Discharge: Study and Application (Izd-vo KRSU, Bishkek, 2009) [in Russian].

    Google Scholar 

  34. T. R. Hayes, R. C. Wetzel, and R. S. Freund, Phys. Rev. A 35, 578 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Avtaeva, S.M. Avdeev, E.A. Sosnin, 2010, published in Fizika Plazmy, 2010, Vol. 36, No. 8, pp. 768–778.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avtaeva, S.V., Avdeev, S.M. & Sosnin, E.A. Radiation of nitrogen molecules in a dielectric barrier discharge with small additives of chlorine and bromine. Plasma Phys. Rep. 36, 719–728 (2010). https://doi.org/10.1134/S1063780X10080088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10080088

Keywords

Navigation