Skip to main content
Log in

Convectively stable pressure profile in magnetic confinement systems with internal rings

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A convectively stable pressure profile in a long multiple-mirror (corrugated) magnetic confinement system with internal current-carrying rings is calculated. The plasma energy content in the axial region can be increased by using an internal ring that reverses the on-axis magnetic field direction and gives rise to an average magnetic well near the axis. The pressure profile in the outer region—outside the magnetic well—is considered in detail. It is shown that, in the radial pressure profile, a pedestal can be formed that leads to a higher pressure drop between the center and the plasma edge. The pressure profile is calculated from the Kruskal-Oberman criterion—a necessary and sufficient condition for the convective stability of a collisionless plasma. The revealed pedestal arises near the boundary of the average magnetic well in the region of the smallest but alternating-sign curvature of the magnetic field lines due to a break in the convectively stable pressure profile. Such a shape of the stable pressure profile can be attributed to the stabilizing effect of the alternating-sign curvature of the field lines in the multiple-mirror magnetic confinement systems under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. B. B. Kadomtsev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4, p. 353.

    Google Scholar 

  2. D. D. Ryutov, Usp. Fiz. Nauk 154, 565 (1988) [Sov. Phys. Usp. 31, 300 (1988)].

    Google Scholar 

  3. G. I. Dimov, Usp. Fiz. Nauk 175, 1185 (2005) [Phys. Usp. 48, 1129 (2005)].

    Article  Google Scholar 

  4. V. M. Glagolev, B. B. Kadomtsev, B. A. Trubnikov, and V. D. Shafranov, in Proceedings of the 10th European Conference on Controlled Fusion and Plasma Physics, Moscow, 1981, Paper E-8.

  5. V. V. Kondakov, S. F. Perelygin, and V. M. Smirnov, Zh. Tekh. Fiz. 69(2), 22 (1999) [Tech. Phys. 44, 151 (1999)]; V. V. Kondakov, S. F. Perelygin, and V. M. Smirnov, Fiz. Plazmy 26, 407 (2000) [Plasma Phys. Rep. 26, 379 (2000)].

    Google Scholar 

  6. V. V. Arsenin, E. D. Dlougach, V. M. Kulygin, et al., Nucl. Fusion 41, 945 (2001).

    Article  ADS  Google Scholar 

  7. V. M. Kulygin, V. V. Arsenin, V. A. Zhiltsov, et al., Nucl. Fusion 47, 738 (2007).

    Article  ADS  Google Scholar 

  8. H. Furth, in Advances in Plasma Physics, Ed. by. A. Simon and W. B. Thompson (Interscience, New York, 1968), Vol. 1, p. 67.

    Google Scholar 

  9. A. I. Morozov and V. V. Savel’ev, Usp. Fiz. Nauk 168, 1153 (1998) [Phys. Usp. 41, 1049 (1998)].

    Article  Google Scholar 

  10. A. Hasegawa, L. Chen, and M. E. Mauel, Nucl. Fusion 30, 2405 (1990).

    Google Scholar 

  11. D. T. Garnier, A. Hansen, M. E. Mauel, et al., Phys. Plasmas 13, 056111 (2006).

    Article  ADS  Google Scholar 

  12. G. V. Krashevskaya, V. A. Kurnaev, and M. M. Tsventoukh, in Proceedings of the 28th International Conference on Phenomena in Ionized Gases, Prague, 2007, p. 393, http://icpig2007.ipp.cas.cz/files/download/cd-cko/ICPIG2007/pdf/1P04-18.pdf; M. M. Berdnikova, A. M. Vaitonene, V. V. Vaitonis, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 22 (2003); D. E. Vovchenko, G. V. Krashevskaya, V. A. Kurnaev, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 4, 68 (2006).

  13. M. Tuszewski, Nucl. Fusion 28, 2033 (1988).

    Google Scholar 

  14. J. Kesner, D. T. Garnier, A. Hansen, et al., Nucl. Fusion 44, 193 (2004).

    Article  ADS  Google Scholar 

  15. P. N. Alekseev, É. A. Azizov, E. P. Velikhov, et al., XXXVI International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2009, Abstracts of Papers, p. 21.

  16. M. M. Tsventoukh, Fiz. Plazmy 35, 381 (2009) [Plasma Phys. Rep. 35, 343 (2009)].

    Google Scholar 

  17. D. T. Garnier, A. C. Boxer, J. L. Ellsworth, et al., in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper IC/P4-12.

  18. Z. Yoshida, J. Morikawa, H. Saitoh, et al., in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper EX/P5-28.

  19. M. M. Tsventoukh, Fiz. Plazmy 35, 591 (2007) [Plasma Phys. Rep. 35, 535 (2007)].

    Google Scholar 

  20. M. M. Tsventoukh, Ph.D. Thesis (MEPhI, Moscow, 2009).

  21. M. D. Kruskal and C. R. Oberman, Phys. Fluids 1, 275 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. B. B. Kadomtsev, in B. B. Kadomtsev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4, p. 370.

    Google Scholar 

  23. M. N. Rosenbluth and N. Rostoker, Phys. Fluids 2, 23 (1959).

    Article  MATH  ADS  Google Scholar 

  24. A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).

    Google Scholar 

  25. A. B. Mikhailovskii, Instabilities in a Confined Plasma (Atomizdat, Moscow, 1978; IOP, Bristol, 1998).

    Google Scholar 

  26. L. V. Mikhailovskaya, Fiz. Plazmy 14, 1241 (1988) [Sov. J. Plasma Phys. 14, 727 (1988)].

    Google Scholar 

  27. V. V. Arsenin and A. Yu. Kuyanov, Fiz. Plazmy 27, 675 (2001) [Plasma Phys. Rep. 27, 635 (2001)].

    Google Scholar 

  28. I. I. Demidenko, N. S. Lomino, V. D. Padalka, et al., in Plasma Accelerators, Ed. by L. A. Artsimovich (Mashinostroenie, Moscow, 1972), p. 282 [in Russian].

    Google Scholar 

  29. V. P. Pastukhov and N. V. Chudin, Fiz. Plazmy 27, 963 (2001) [Plasma Phys. Rep. 27, 907 (2001)].

    Google Scholar 

  30. D. D. Ryutov and G. V. Stupakov, Pis’ma Zh. Éksp. Teor. Fiz. 42, 29 (1985) [JETP Lett. 42, 35 (1985)].

    Google Scholar 

  31. D. D. Ryutov and G. V. Stupakov, Fiz. Plazmy 12, 1411 (1986) [Sov. J. Plasma Phys. 12, 815 (1986)].

    Google Scholar 

  32. V. V. Arsenin, Fiz. Plazmy 8, 484 (1982) [Sov. J. Plasma Phys. 8, 272 (1982)].

    Google Scholar 

  33. V. V. Arsenin, Pis’ma Zh. Éksp. Teor. Fiz. 37, 534 (1983) [JETP Lett. 37, 637 (1983)].

    Google Scholar 

  34. V. V. Arsenin, Pis’ma Zh. Éksp. Teor. Fiz. 43, 270 (1986) [JETP Lett. 43, 346 (1986)].

    Google Scholar 

  35. H. P. Furth, Phys. Rev. Lett. 11, 308 (1963).

    Article  ADS  Google Scholar 

  36. J. Andreoletti, R. C. Acad. Sci. 257, 1235 (1963).

    MathSciNet  Google Scholar 

  37. B. G. Logan, Comm. Plasma Phys. Controlled Fusion 6, 199 (1981).

    Google Scholar 

  38. B. B. Kadomtsev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4, p. 380

    Google Scholar 

  39. V. V. Arsenin and P. N. Terekhin, Fiz. Plazmy 34, 971 (2008) [Plasma Phys. Rep. 34, 895 (2008)].

    Google Scholar 

  40. I. Katanuma, Y. Sasagawa, Y. Tatematsu, et al., Nucl. Fusion 46, 608 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.M. Tsventoukh, 2010, published in Fizika Plazmy, 2010, Vol. 36, No. 6, pp. 499–509.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsventoukh, M.M. Convectively stable pressure profile in magnetic confinement systems with internal rings. Plasma Phys. Rep. 36, 462–472 (2010). https://doi.org/10.1134/S1063780X10060036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X10060036

Keywords

Navigation