Skip to main content
Log in

Study of high-power pulsed RF generators based on a hollow-cathode discharge

  • Plasma Electronics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from studies of physical principles underlying operation of high-power pulsed RF generators based on a hollow-cathode discharge (HCD). Various types of instabilities that may occur in an HCD and lead to 100% RF modulation of the electrode voltage in the megahertz frequency range are discussed. The design, electric characteristics, and operating modes of HCD-based RF generators are described. Results of experiments aimed at increasing the power and duration of RF pulses are presented. It is demonstrated that such devices are capable of generating 10- to 220-MHz pulses with a power of up to 8 MW, duration of up to 10 µs, and repetition rate of 1 kHz. The discharge chambers of such generators are very simple in design, they have very high stability, and their efficiency reaches 35%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Moskalev, Hollow-Cathode Discharge (Atomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  2. A. S. Metel’ and S. N. Grigor’ev, Glow Discharge with Electrostatic Electron Confinement (Yanus-K, Moscow, 2005) [in Russian].

    Google Scholar 

  3. F. Paschen, Ann. Phys. 50, 901 (1916).

    Article  Google Scholar 

  4. Yu. E. Kreindel’, Plasma Sources of Electrons (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  5. M. D. Gabovich, Physics and Technology of Plasma Ion Sources (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  6. V. P. Afanas’ev, Fiz. Élement. Chast. Yadra 19, 1197 (1988).

    Google Scholar 

  7. A. T. Forrester, Large Ion Beams (Wiley, New York, 1988; Mir, Moscow, 1992).

    Google Scholar 

  8. A. P. Semenov, Sputtering Ion Beams: Production and Application (BNTs SO RAN, Ulan-Ude, 1999) [in Russian].

    Google Scholar 

  9. S. V. Bulychev, A. E. Dubinov, V. S. Zhdanov, et al., Prib. Tekh. Éksp., No. 3, 116 (1999) [Instrum. Exp. Tech. 42, 394 (1999)].

  10. H. Pak and M. Kushner, J. Appl. Phys. 71, 94 (1992).

    Article  ADS  Google Scholar 

  11. D. C. Gerstenberger, R. Solanki, and G. J. Collins, IEEE Trans. Quantum Electron. 16, 820 (1980).

    Article  ADS  Google Scholar 

  12. K. A. Peard, K. Rózsa, and R. C. Tobin, J. Phys. D 27, 219 (1994).

    Article  ADS  Google Scholar 

  13. T. I. Lee, K. W. Park, H. S. Hwang, et al., Plasma Sources Sci. Technol. 15, 458 (2006).

    Article  ADS  Google Scholar 

  14. D. E. Holmgren, R. W. Falcone, D. J. Walker, and S. E. Harris, Opt. Lett. 9, 85 (1984).

    Article  ADS  Google Scholar 

  15. H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, Rev. Sci. Instrum. 74, 3453 (2003).

    Article  ADS  Google Scholar 

  16. D. Andruczyk, P. X. Feng, B. W. James, and J. Howard, Plasma Sources Sci. Technol. 11, 426 (2002).

    Article  ADS  Google Scholar 

  17. V. S. Cherednichenko and M. V. Cherednichenko, Hollow-Cathode Vacuum Plasma Furnaces (NGTU, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  18. E. V. Dolbilin and A. Yu. Chursin, Hollow-Cathode Plasma Electron Devices (MÉI, Moscow, 2005) [in Russian].

    Google Scholar 

  19. V. A. Gordienko, A. E. Dubinov, S. S. Zhuravlev, et al., Fiz. Plazmy 31, 298 (2005) [Plasma Phys. Rep. 31, 266 (2005)].

    Google Scholar 

  20. J. C. Helmer and R. L. Jepsen, Tr. Inst. Radiotekh. Élektron., USSR Acad. Sci., No. 12, 2203 (1961) [Proc. Inst. Radio Eng. Electron. 49, 1920 (1961)].

  21. N. V. Vasil’eva, N. V. Volkov, M. Z. Novgorodov, and N. N. Sobolev, Fiz. Plazmy 8, 619 (1982) [Sov. J. Plasma Phys. 8, 351 (1982)].

    Google Scholar 

  22. R. R. Arslanbekov, A. A. Kudryavtsev, and L. A. Movcham, IEEE Trans. Plasma Sci. 24, 1079 (1996).

    Article  ADS  Google Scholar 

  23. Z. Donko, K. Rozha, and L. Shalai, Fiz. Plazmy 24, 637 (1998) [Plasma Phys. Rep. 24, 588 (1998)].

    Google Scholar 

  24. K. H. Schoenbach, R. Verhappen, T. Tessnow, et al., Appl. Phys. Lett. 68, 13 (1996).

    Article  ADS  Google Scholar 

  25. H. Matsuzaki, Yu. Imahori, and T. Kamegava, J. Appl. Phys. 46, 4392 (1975).

    Article  ADS  Google Scholar 

  26. S.-J. Park, J. Chen, C. Liu, and J. G. Eden, Appl. Phys. Lett. 78, 419 (2001).

    Article  ADS  Google Scholar 

  27. M. F. Danilov and E. V. Kalashnikov, Teplofiz. Vys. Temp. 33, 663 (1995).

    Google Scholar 

  28. A. E. Dubinov, E. E. Dubinov, V. S. Zhdanov, et al., Pis’ma Zh. Tekh. Fiz. 26(20), 82 (2000) [Tech. Phys. Lett. 26, 932 (2000)].

    Google Scholar 

  29. G. Stockhausen and M. Kock, J. Phys. D 34, 1683 (2001).

    Article  ADS  Google Scholar 

  30. J. Hildebrandt, J. Phys. D 16, 1023 (1983).

    Article  ADS  Google Scholar 

  31. J. Hildebrandt, Phys. Lett. A 95, 365 (1983).

    Article  ADS  Google Scholar 

  32. R. Singh, P. S. R. Prasad, J. K. Bhattacharjee, and R. K. Thareja, Phys. Lett. A 178, 284 (1993).

    Article  ADS  Google Scholar 

  33. S. Glišić, A. I. Strinic, J. V. Živković, and Z. Lj. Petrović, IEEE Trans. Plasma Sci. 26, 1492 (1998).

    Article  ADS  Google Scholar 

  34. A. V. Kozyrev and M. K. Makarov, in Proceedings of the Kreindel’ Seminar on Plasma Emission Electronics, Ulan-Ude, 2006, p. 37.

  35. D. Arbel, Z. Bar-Lev, J. Felsteiner, et al., Phys. Rev. Lett. 71, 2919 (1993).

    Article  ADS  Google Scholar 

  36. D. Arbel, Z. Bar-Lev, J. Felsteiner, et al., Appl. Phys. Lett. 66, 1193 (1995).

    Article  ADS  Google Scholar 

  37. D. Arbel, Z. Bar-Lev, J. Felsteiner, et al., Phys. Rev. Lett. 78, 66 (1997).

    Article  ADS  Google Scholar 

  38. J. Felsteiner, S. Ish-Shalom, and Ya. Z. Slutsker, J. Appl. Phys. 83, 2940 (1998).

    Article  ADS  Google Scholar 

  39. Yu. P. Bliokh, J. Felsteiner, Ya. Z. Slutsker, and P. M. Vaisberg, IEEE Trans. Plasma Sci. 29, 895 (2001).

    Article  ADS  Google Scholar 

  40. Yu. P. Bliokh, J. Felsteiner, and Ya. Z. Slutsker, Europhys. Lett. 46, 735 (1999).

    Article  ADS  Google Scholar 

  41. D. V. Vyalykh, A. E. Dubinov, I. L. L’vov, et al., Prib. Tekh. Éksp., No. 1, 86 (2005) [Instrum. Exp. Tech. 48, 71 (2005)].

  42. A. E. Dubinov, I. L. L’vov, S. A. Sadovoy, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 49, 300 (2006) [Radiophys. Quant. Electron., 49, 269 (2006)].

    Google Scholar 

  43. H. Eichhorn, K. H. Schoenbach, and T. Tessnow, Appl. Phys. Lett. 63, 2481 (1993).

    Article  ADS  Google Scholar 

  44. I. I. Bakaleinik, in Problems of Low-Temperature Plasma Physics (Nauka i Tekhnika, Minsk, 1970), p. 232 [in Russian].

    Google Scholar 

  45. I. I. Bakaleinik, in Problems of Low-Temperature Plasma Physics (Nauka i Tekhnika, Minsk, 1970), p. 236 [in Russian].

    Google Scholar 

  46. J. Hildebrandt, J. Phys. D 39, 3625 (2006).

    Article  ADS  Google Scholar 

  47. E. M. Oks, A. Anders, Ya. G. Braun, et al., Fiz. Plazmy 31, 1051 (2005) [Plasma Phys. Rep. 31, 978 (2005)].

    Google Scholar 

  48. I. Yu. Kostyukov and G. M. Fraiman, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 46, 976 (2003) [Radiophys. Quant. Electron., 46, 873 (2003)].

    Google Scholar 

  49. G. S. Ramm, Microwave Triode Oscillators (Voenizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  50. B. Agdur and U. Ternström, Phys. Rev. Lett. 13, 5 (1964).

    Article  ADS  Google Scholar 

  51. C. Popovici, M. Somesan, and V. Nistor, Phys. Lett. A 22, 587 (1966).

    Article  Google Scholar 

  52. G. V. Grekova, E. I. Lapshin, G. V. Okhmatovskii, and V. E. Slukin, Zh. Tekh. Fiz. 50, 2232 (1980) [Sov. Phys. Tech. Phys. 25, 1303 (1980)].

    Google Scholar 

  53. G. Schaefer and M. Wages, IEEE Trans. Plasma Sci. 16, 54 (1988).

    Article  ADS  Google Scholar 

  54. R. P. Babertsyan, É. S. Badalyan, G. A. Egiazaryan, et al., Zh. Tekh. Fiz. 70(4), 24 (2000) [Tech. Phys. 45, 406 (2000)].

    Google Scholar 

  55. Yu. P. Raizer, Fundamentals of Modern Physics of Gas-Discharge Processes (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  56. Ya. S. Itskhoki, Pulsed Devices (Sovetskoe Radio, Moscow, 1959) [in Russian].

    Google Scholar 

  57. Yu. D. Korolev and G. A. Mesyats, Cold-Emission and Explosion Processes in Gas Discharges (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  58. Electrical Breakdown of Gases, Ed. by J. M. Meek and J. D. Craggs (Wiley, New York, 1978; Inostrannaya Literatura, Moscow, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Bulychev, D.V. Vyalykh, A.E. Dubinov, V.S. Zhdanov, I Yu. Kornilova, I.L. L’vov, S.K. Saikov, S.A. Sadovoy, V.D. Selemir, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 11, pp. 1019–1040.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulychev, S.V., Vyalykh, D.V., Dubinov, A.E. et al. Study of high-power pulsed RF generators based on a hollow-cathode discharge. Plasma Phys. Rep. 35, 941–961 (2009). https://doi.org/10.1134/S1063780X09110051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09110051

Keywords

Navigation