Skip to main content
Log in

Excitation of whistler waves in a collisional magnetoplasma in the presence of ducts with enhanced density

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A study is made of the excitation of waves in the whistler frequency range by a given ring electric current in a collisional magnetoplasma in the presence of a cylindrical duct with enhanced density. It is shown that, under certain conditions, dissipative losses due to electron collisions in plasma can lead to a substantial redistribution of the source radiation power over the spatial spectrum of the modes guided by the duct, as compared to the case of a collisionless plasma. Numerical results are presented that illustrate these changes in the excitation efficiency of whistler modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Helliwell, Whistlers and Related Ionospheric Phenomena (Stanford University Press, Stanford, 1965).

    Google Scholar 

  2. R. A. Helliwell, in Modern Radio Science 1993, Ed. by H. Matsumoto (Oxford University Press, New York, 1993), p. 189.

    Google Scholar 

  3. S. Sazhin, M. Hayakawa, and K. Bullough, Ann. Geophys. 10, 293 (1992).

    ADS  Google Scholar 

  4. Cs. Ferencz, O. E. Ferencz, D. Hamar, and J. Lichtenberger, Whistler Phenomena: Short Impulse Propagation (Kluwer, Dordrecht, 2001).

    Google Scholar 

  5. I. G. Kondrat’ev, A. V. Kudrin, and T. M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas (Gordon & Breach, Amsterdam, 1999).

    MATH  Google Scholar 

  6. A. V. Kudrin, M. Yu. Lyakh, and T. M. Zaboronkova, IEEE Trans. Antennas Propag. 49, 1645 (2001).

    Article  ADS  Google Scholar 

  7. T. M. Zaboronkova, A. V. Kudrin, and M. Yu. Lyakh, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 46, 452 (2003) [Radiophys. Quantum Electron. 46, 407 (2003)].

    Google Scholar 

  8. N. F. Vorob’ev and A. A. Rukhadze, Fiz. Plazmy 20, 1065 (1994) [Plasma Phys. Rep. 20, 955 (1994)].

    Google Scholar 

  9. K. P. Shamrai and V. B. Taranov, Plasma Sources Sci. Technol. 5, 474 (1996).

    Article  ADS  Google Scholar 

  10. R. W. Boswell and F. F. Chen, IEEE Trans. Plasma Sci. 25, 1229 (1997).

    Article  ADS  Google Scholar 

  11. F. F. Chen and R. W. Boswell, IEEE Trans. Plasma Sci. 25, 1245 (1997).

    Article  ADS  Google Scholar 

  12. A. F. Aleksandrov, G. É. Bugrov, K. V. Vavilin, et al.,Fiz. Plazmy 30, 434 (2004) [Plasma Phys. Rep. 30, 398 (2004)].

    Google Scholar 

  13. A. V. Kudrin and V. A. Es’kin, Phys. Scr. 74, 425 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. V. Kudrin, V. A. Es’kin, C. Krafft, and T. M. Zaboronkova, Phys. Scr. 77, 055501 (2008).

    Google Scholar 

  15. V. A. Es’kin, T. M. Zaboronkova, and A. V. Kudrin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 51, 31 (2008) [Radiophys. Quantum Electron. 51, 28 (2008)].

    ADS  Google Scholar 

  16. T. M. Zaboronkova, A. V. Kudrin, and G. A. Markov, Fiz. Plazmy 19, 769 (1993) [Plasma Phys. Rep. 19, 397 (1993)].

    Google Scholar 

  17. T. M. Zaboronkova, A. V. Kudrin, M. Yu. Lyakh, and L. L. Popova, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 45, 837 (2002) [Radiophys. Quantum Electron. 45, 764 (2002)].

    Google Scholar 

  18. E. A. Mareev and Yu. V. Chugunov, Antennas in Plasma (Inst. Prikl. Fiz. Akad. Nauk SSSR, Nizhni Novgorod, 1991) [in Russian].

    Google Scholar 

  19. Yu. V. Chugunov and G. A. Markov, J. Atmos. Sol.-Terr. Phys. 63, 1775 (2001).

    Article  ADS  Google Scholar 

  20. A. V. Kostrov, A. V. Kudrin, L. E. Kurina, et al.,Phys. Scr. 62, 51 (2000).

    Article  ADS  Google Scholar 

  21. A. V. Kudrin, L. E. Kurina, and E. Yu. Petrov, Zh. Éksp. Teor. Fiz. 119, 1118 (2001) [JETP 92, 969 (2001)].

    Google Scholar 

  22. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

    Google Scholar 

  23. V. V. Shevchenko, Continuous Transitions in Open Waveguides (Nauka, Moscow, 1969; Golem, Boulder, CO, 1971).

    Google Scholar 

  24. R. F. Harrington and A. T. Villeneuve, IRE Trans. Microwave Theory Tech. 6, 308 (1958).

    Article  Google Scholar 

  25. V. I. Talanov, Selected Articles (Inst. Prikl. Fiz. RAN, Nizhni Novgorod, 2008), p. 61 [in Russian].

    Google Scholar 

  26. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1984).

    Google Scholar 

  27. I. G. Kondrat’ev, A. V. Kudrin, and T. M. Zaboronkova, Radio Sci. 27, 315 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Es’kin, A.V. Kudrin, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 9, pp. 834–845.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Es’kin, V.A., Kudrin, A.V. Excitation of whistler waves in a collisional magnetoplasma in the presence of ducts with enhanced density. Plasma Phys. Rep. 35, 768–778 (2009). https://doi.org/10.1134/S1063780X09090050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09090050

PACS numbers

Navigation