Skip to main content
Log in

Ion acoustic cnoidal waves in a dusty plasma with a critical dust density

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The propagation of nonlinear periodic ion acoustic waves in a dusty plasma is considered for conditions in which the coefficient in the nonlinear equation that describes the quadratic nonlinearity of the medium is zero. An equation that accounts for the cubic nonlinearity of the system is derived, and its solution is found. The dependence of the phase velocity of a cnoidal wave on its amplitude and modulus is determined. In describing the effect of higher order nonlinearities on the properties of a dust ion acoustic wave, two coupled equations for the first- and second-order potentials are obtained. It is shown that the nonlinear ion flux generated by a cnoidal wave propagating in a medium with a cubic nonlinearity is proportional to the fourth power of the wave amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  2. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  3. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).

    Article  ADS  Google Scholar 

  4. W. M. Moslem and W. F. El-Taibany, Phys. Plasmas 12, 122309 (2005).

    Google Scholar 

  5. H. Abbasi and H. H. Pajouh, Phys. Plasmas 14, 012307 (2007).

    Google Scholar 

  6. R. L. Herman, Phys. Fluids 2, 1775 (1990).

    Article  MathSciNet  Google Scholar 

  7. P. K. Shukla and A. A. Mamun, Phys. Plasmas 9, 1468 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. K. K. Ghosh and D. Ray, Phys. Fluids 3, 300 (1991).

    Article  Google Scholar 

  9. Y. Nejoh, Phys. Fluids 4, 2830 (1992).

    Article  Google Scholar 

  10. N. C. Lee and C. R. Choi, Phys. Plasmas 14, 022 307 (2007).

  11. L. T. Song, L. C. Lee, and L. Huang, Phys. Fluids 31, 1549 (1988).

    Article  ADS  Google Scholar 

  12. L. L. Yadav, R. S. Tiwari, K. R. Maheshwari, and S. R. Sharma, Phys. Rev. E 52, 3045 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  13. L. C. Lee and J. R. Kan, Phys. Fluids 24, 430 (1981).

    Article  MATH  ADS  Google Scholar 

  14. A. Roychowdhury, G. Pakira, and S. N. Paul, J. Plasma Phys. 41, 447 (1989).

    Article  ADS  Google Scholar 

  15. Y. H. Ichikawa, Phys. Scr. 20, 296 (1979).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. K. Konno, T. Mitsuhashi, and Y. H. Ichikawa, J. Phys. Soc. Jpn. 46, 1907 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. S. Tiwari, S. L. Jain, and J. K. Chawia, Phys. Plasmas 14, 022106 (2007).

    Google Scholar 

  18. S. K. El-Labany, W. M. Moslem, and F. M. Safy, Phys. Plasmas 13, 082903 (2006).

    Google Scholar 

  19. S. I. Popel, Phys. Rev. E 67, 056402 (2003).

    Google Scholar 

  20. V. I. Karpman, Nonlinear Waves in Dispersive Media (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Prudskikh, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 8, pp. 709–715.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudskikh, V.V. Ion acoustic cnoidal waves in a dusty plasma with a critical dust density. Plasma Phys. Rep. 35, 651–657 (2009). https://doi.org/10.1134/S1063780X09080054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09080054

PACS numbers

Navigation