Skip to main content
Log in

Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Didenko, Ya. E. Krasik, S. F. Perelygin, and G. P. Fomenko, Pis’ma Zh. Tekh. Fiz. 5, 321 (1979) [Sov. Tech. Phys. Lett. 5, 128 (1979)].

    Google Scholar 

  2. A. N. Didenko, A. G. Zherlitsyn, A. S. Sulakshin, et al., Pis’ma Zh. Tekh. Fiz. 9, 1510 (1983) [Sov. Tech. Phys. Lett. 9, 647 (1983)].

    Google Scholar 

  3. High-Power Microwave Sources, Ed. by V. L. Granatstein and I. Alexeff (Artech House, Boston, 1987).

    Google Scholar 

  4. A. E. Dubinov and V. D. Selemir, Radiotekh. Élektron. (Moscow) 47, 575 (2002).

    Google Scholar 

  5. D. I. Trubetskov and A. E. Hramov, Lectures on Microwave Electronics for Physicists (Fizmatlit, Moscow, 2003, 2004), Vols. 1, 2 [in Russian].

    Google Scholar 

  6. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasma (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  7. V. D. Selemir, B. V. Alekhin, V. E. Vatrunin, et al., Fiz. Plazmy 20, 689 (1994) [Plasma Phys. Rep. 20, 621 (1994)].

    Google Scholar 

  8. V. G. Anfinogentov and A. E. Hramov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 41, 1137 (1998).

    Google Scholar 

  9. A. A. Koronovskii and A. E. Hramov, Fiz. Plazmy 28, 722 (2002) [Plasma Phys. Rep. 28, 666 (2002)].

    Google Scholar 

  10. A. E. Dubinov, I. A. Efimova, I. Yu. Kornilova, et al., Fiz. Élem. Chastits At. Yadra 35, 462 (2004).

    Google Scholar 

  11. A. E. Hramov and I. S. Rempen, Int. J. Electron. 91(1), 1 (2004).

    Article  Google Scholar 

  12. Yu. A. Kalinin, A. A. Koronovskii, A. E. Hramov, et al., Fiz. Plazmy 31, 1009 (2005) [Plasma Phys. Rep. 31, 938 (2005)].

    Google Scholar 

  13. E. N. Egorov, Yu. A. Kalinin, A. A. Koronovskii, et al., Radiotekh. Élektron. (Moscow) 51(11), 51 (2007).

    Google Scholar 

  14. E. N. Egorov, Yu. A. Kalinin, A. A. Koronovskii, and A. E. Hramov, Zh. Tekh. Fiz. 77(10), 139 (2007) [Tech. Phys. 52, 1387 (2007)].

    Google Scholar 

  15. N. A. Nikolov, K. G. Kostov, I. P. Spassovsky, and V. A. Spassov, Electron. Lett. 24, 1445 (1998).

    Article  Google Scholar 

  16. K. G. Kostov, N. A. Nikolov, I. P. Spassovsky, and V. A. Spassov, Appl. Phys. Lett. 60, 2598 (1992).

    Article  ADS  Google Scholar 

  17. K. G. Kostov, N. A. Nikolov, and V. A. Spassov, Electron. Lett. 29, 1069 (1993).

    Article  Google Scholar 

  18. K. G. Kostov and N. A. Nikolov, Phys. Plasmas 1, 1034 (1994).

    Article  ADS  Google Scholar 

  19. N. N. Gadetskii, I. I. Magda, S. I. Naisteter, et al., Fiz. Plazmy 19, 530 (1993) [Plasma Phys. Rep. 19, 273 (1993)].

    Google Scholar 

  20. K. G. Kostov, I. G. Yovchev, and N. A. Nikolov, Electron. Lett. 35, 1647 (1999).

    Article  Google Scholar 

  21. W. Jiang, H. Kitano, L. Huang, et al., IEEE Trans. Plasma Sci. 24, 187 (1996).

    Article  ADS  Google Scholar 

  22. E. N. Egorov and A. E. Hramov, Fiz. Plazmy 32, 742 (2006) [Plasma Phys. Rep. 32, 683 (2006)].

    Google Scholar 

  23. M. Yu. Morozov and A. E. Hramov, Fiz. Plazmy 33, 610 (2007) [Plasma Phys. Rep. 33, 553 (2007)].

    Google Scholar 

  24. A. E. Hramov, A. A. Koronovskii, M. Yu. Morozov, and A. V. Mushtakov, Phys. Lett. A 372, 876 (2008).

    Article  ADS  Google Scholar 

  25. T. J. T. Kwan and H. A. Davis, IEEE Trans. Plasma Sci. 16, 185 (1988).

    Article  ADS  Google Scholar 

  26. H. A. Davis, R. R. Bartsch, T. J. T. Kwan, et al., IEEE Trans. Plasma Sci. 16, 192 (1988).

    Article  ADS  Google Scholar 

  27. H. A. Davis, R. D. Fulton, E. G. Sherwood, and T. J. T. Kwan, IEEE Trans. Plasma Sci. 18, 611 (1990).

    Article  ADS  Google Scholar 

  28. S. E. Tsimring, Electron Beams and Microwave Vacuum Electronics (Wiley, Hoboken, NJ, 2007).

    Google Scholar 

  29. A. S. Roshal’, Simulations of Charged Particle Beams (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  30. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; Énergoatomizdat, Moscow, 1989).

    Google Scholar 

  31. G. Singh and S. Chaturvedi, IEEE Trans. Plasma Sci. 36, 694 (2008).

    Article  ADS  Google Scholar 

  32. F. Takens, in Dynamical Systems and Turbulence, Ed. by D. A. Rand and L. S. Young (Springler-Verlag, New York, 1981), p. 366.

    Chapter  Google Scholar 

  33. S. A. Kurkin and A. E. Hramov, Pis’ma Zh. Tekh. Fiz. 35(1), 48 (2009) [Tech. Phys. Lett. 35, 23 (2009)].

    Google Scholar 

  34. Yu. P. Bliokh, I. I. Magda, S. I. Neisteter, and Yu. V. Prokopenko, Fiz. Plazmy 18, 1182 (1992) [Sov. J. Plasma Phys. 18, 616 (1992)].

    Google Scholar 

  35. A. E. Hramov, Radiotekh. Élektron. (Moscow) 44, 551 (1999).

    Google Scholar 

  36. A. E. Hramov, A. A. Koronovskii, and I. S. Rempen, Chaos 16, 013 123 (2006).

    Google Scholar 

  37. H. Matsumoto, H. Yokoyama, and D. Summers, Phys. Plasmas 3, 177 (1996).

    Article  ADS  Google Scholar 

  38. V. G. Anfinogentov and A. E. Hramov, Izv. Akad. Nauk 61, 2391 (1997).

    Google Scholar 

  39. Yu. A. Kalinin and A. E. Hramov, Zh. Tekh. Fiz. 76(5), 25 (2006) [Tech. Phys. 51, 558 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Kurkin, A.A. Koronovski, A.E. Hramov, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 8, pp. 684–699.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurkin, S.A., Koronovski, A.A. & Hramov, A.E. Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field. Plasma Phys. Rep. 35, 628–642 (2009). https://doi.org/10.1134/S1063780X09080029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09080029

PACS numbers

Navigation