Skip to main content
Log in

Associative ionization reactions involving excited atoms in nitrogen plasma

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2009

Abstract

A model of kinetic processes in gas-discharge plasmas of pure nitrogen and its mixtures with nitrogen oxide and oxygen is presented. A distinctive feature of the model is that it includes associative ionization reactions involving N(2 P) electronically excited atoms. Taking into account these processes allows one to explain both the anomalously slow decay of gas-discharge nitrogen plasma and the increase in the electron density in the region of the so-called pink afterglow in nitrogen. The possibility of substantially accelerating secondary ionization by adding NO molecules to a partially dissociated nitrogen is demonstrated. It is shown that such acceleration is caused by the associative ionization reaction N(2 P) + O(3 P) → e + NO+. The calculated results agree well with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Polak, P. A. Sergeev, and D. I. Slovetskii, Teplofiz. Vys. Temp. 15, 15 (1977).

    ADS  Google Scholar 

  2. Yu. B. Golubovskii and V. M. Telezhko, Teplofiz. Vys. Temp. 22, 428 (1984).

    Google Scholar 

  3. Yu. S. Akishev, K. V. Baiadze, V. M. Vetsko, et al., Fiz. Plazmy 11, 999 (1985) [Sov. J. Plasma Phys. 11, 582 (1985)].

    Google Scholar 

  4. A. V. Berdyshev, I. V. Kochetov, and A. P. Napartovich, Fiz. Plazmy 14, 741 (1988) [Sov. J. Plasma Phys. 14, 438 (1988)].

    Google Scholar 

  5. A. V. Berdyshev, A. S. Golovin, V. A. Gurashvili, et al., Fiz. Plazmy 15, 335 (1989) [Sov. J. Plasma Phys. 15, 195 (1989)].

    Google Scholar 

  6. Yu. A. Mankelevich, A. F. Pal’, N. A. Popov, et al., Fiz. Plazmy 27, 1035 (2001) [Plasma Phys. Rep. 7, 979 (2001)].

    Google Scholar 

  7. S. I. Gritsynin, I. A. Kossyi, V. P. Silakov, et al., Zh. Tekh. Fiz. 57, 681 (1987) [Sov. Phys. Tech. Phys. 32, 414 (1987)].

    Google Scholar 

  8. N. A. Bogatov, S. V. Golubev, and S. V. Razin, Teplofiz. Vys. Temp. 30, 1041 (1992).

    Google Scholar 

  9. N. A. Popov, Teplofiz. Vys. Temp. 30, 177 (1994).

    Google Scholar 

  10. J. Tulip and H. J. Seguin, Phys. Lett. A. 58, 173 (1976).

    Article  ADS  Google Scholar 

  11. S. M. Kurkin and V. M. Shashkov, Teplofiz. Vys. Temp. 22, 999 (1984).

    Google Scholar 

  12. A. S. Basiev, F. I. Vysikailo, V. A. Gurashvili, and E. Yu. Shchekotov, Fiz. Plazmy 9, 1076 (1983) [Sov. J. Plasma Phys. 9, 627 (1983)].

    Google Scholar 

  13. L. G. Bol’shakova, Yu. B. Golubovskii, V. M. Telezhko, and D. G. Stoyanov, Zh. Tekh. Fiz. 60(6), 53 (1990) [Sov. Phys. Tech. Phys. 35, 665 (1990)].

    Google Scholar 

  14. N. Sadeghi, C. Foissac, and P. Supiot, J. Phys. D 34, 1779 (2001).

    Article  ADS  Google Scholar 

  15. P. A. Sa, V. Guerra, J. Loureiro, and N. Sadeghi, J. Phys. D 37, 221 (2004).

    Article  ADS  Google Scholar 

  16. S. V. Golubev, S. I. Gritsinin, V. G. Zorin, et al., in Microwave Discharges in Wave Fields, Ed. by A. G. Litvak (IPF AN SSSR, Gorki, 1988), p. 136 [in Russian].

    Google Scholar 

  17. N. Yu. Babaeva, A. Kh. Mnatsakanyan, and G. V. Naidis, Fiz. Plazmy 18, 1055 (1992) [Sov. J. Plasma Phys. 18, 549 (1992)].

    Google Scholar 

  18. P. V. Vedenin and N. A. Popov, Zh. Éksp. Teor. Fiz. 123, 49 (2003) [JETP 96, 40 (2003)].

    Google Scholar 

  19. S. M. Kurkin and V. M. Shashkov, Zh. Tekh. Fiz. 53, 941 (1983) [Sov. Phys. Tech. Phys. 28, 604 (1983)].

    Google Scholar 

  20. W. B. Kunkel and A. L. Gardner, J. Chem. Phys. 37, 1785 (1962).

    Article  ADS  Google Scholar 

  21. C. R. Gatz, F. T. Smith, and H. Wise, J. Chem. Phys. 40, 3743 (1964).

    Article  ADS  Google Scholar 

  22. R. A. Young and G. St. John, J. Chem. Phys. 45, 4156 (1966).

    Article  ADS  Google Scholar 

  23. G. J. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  24. N. L. Aleksandrov and I. V. Kochetov, Teplofiz. Vys. Temp. 25, 1062 (1987).

    ADS  Google Scholar 

  25. A. Kh. Mnatsakanyan and G. V. Naidis, in Plasma Chemistry, Ed. by B. M. Smirnov (Énergoatomizdat, Moscow, 1987), Vol. 14 [in Russian].

    Google Scholar 

  26. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  27. J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453 (1999).

    Article  ADS  Google Scholar 

  28. B. F. Gordiets, C. M. Ferreira, V. L. Guerra, et al., IEEE Trans. Plasma Sci. 23, 750 (1995).

    Article  ADS  Google Scholar 

  29. L. S. Polak, D. I. Slovetskii, and R. D. Todesaite, Khim. Vys. Énerg. 10, 65 (1976).

    Google Scholar 

  30. D. I. Slovetskii, Mechanisms for Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  31. A. V. Berdyshev, I. V. Kochetov, and A. P. Napartovich, Khim. Fiz. 7, 470 (1988).

    Google Scholar 

  32. L. S. Polak, D. I. Slovetskii, and A. S. Sokolov, Khim. Vys. Énerg. 6, 396 (1972).

    Google Scholar 

  33. P. C. Cosby, J. Chem. Phys. 98, 9544 (1993).

    Article  ADS  Google Scholar 

  34. N. A. Popov, in Proceedings of the 20th European Conference on the Atomic and Molecular Physics of Ionized Gases, St. Petersburg, 1992, p. 93.

  35. S. A. Losev, S. Ya. Umanskii, and I. T. Yakubov, in Handbook of Physicochemical Processes in Gas Dynamics, Ed. by G. G. Chernyi and S. A. Losev (Izd. Mosk. Gos. Univ., Moscow, 1995), Vol. 1, p. 293 [in Russian].

    Google Scholar 

  36. L. G. Piper, J. Chem. Phys. 98, 8560 (1993).

    Article  ADS  Google Scholar 

  37. R. A. Young and O. J. Dunn, J. Chem. Phys. 63, 1150 (1975).

    Article  ADS  Google Scholar 

  38. S. M. Kurkin and V. M. Shashkov, Preprint No. 3918/7 (Kurchatov Inst. of Atomic Energy, Moscow, 1984).

  39. M. N. Spencer, J. S. Dickinson, and D. J. Eckstrom, J. Phys. D 20, 923 (1987).

    Article  ADS  Google Scholar 

  40. G. Cernogora and N. Sadeghi, Chem. Phys. Lett. 74, 417 (1980).

    Article  ADS  Google Scholar 

  41. G. Cernogora, L. Hochard, M. Touzeau, and C. M. Ferreira, J. Phys. B 14, 2977 (1981).

    Article  ADS  Google Scholar 

  42. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  43. A. E. Rodriguez, W. L. Morgan, K. J. Touryan, and W. M. Moeny, J. Appl. Phys. 70, 2015 (1991).

    Article  ADS  Google Scholar 

  44. G. V. Naidis, J. Phys. D 32, 2649 (1999).

    Article  ADS  Google Scholar 

  45. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  46. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  47. N. Yu. Babaeva and G. V. Naidis, J. Phys. D 29, 2423 (1996).

    Article  ADS  Google Scholar 

  48. S. Pancheshnyi, M. Nudnova, and A. Starikovskii, Phys. Rev. E 71, 016 407 (2005).

    Google Scholar 

  49. H. Brunet and J. Rocca-Serra, J. Appl. Phys. 57, 1574 (1985).

    Article  ADS  Google Scholar 

  50. P. Supiot, O. Dessaux, and P. Goudmand, J. Phys. D 28, 1826 (1995).

    Article  ADS  Google Scholar 

  51. S. Mazouffre, C. Foissac, P. Supiot, et al., Plasma Sources Sci. Technol. 10, 168 (2001).

    Article  ADS  Google Scholar 

  52. E. Eslami, C. Foissac, P. Supiot, and N. Sadeghi, in Proceedings of the 17th European Conference on the Atomic and Molecular Physics of Ionized Gases, Constanta, Romania, 2004, p. 197.

  53. V. Guerra, P. A. Sa, and J. Loureiro, J. Phys., Conf. Series 63, 012 007 (2007).

    Google Scholar 

  54. E. Eslami and N. Sadeghi, Eur. Phys. J. Appl. Phys. 43, 93 (2008).

    Article  ADS  Google Scholar 

  55. A. N. Wright and C. A. Winkler, Active Nitrogen (Academic, New York, 1968).

    Google Scholar 

  56. J. Janka, M. Nagah, and A. Talsky, in Proceedings of the XIII International Conference on Phenomena in Ionized Gases, Berlin, 1977, p. 57.

  57. V. Zhaunerchyk, W. D. Geppert, E. Vigner, et al., J. Chem. Phys. 127, 014305 (2007).

    Google Scholar 

  58. D. Blois, P. Supiot, M. Barj, et al., J. Phys. D 31, 2521 (1998).

    Article  ADS  Google Scholar 

  59. H. H. Bromer and J. Hesse, Z. Phys. 219, 269 (1969).

    Article  ADS  Google Scholar 

  60. E. P. Velikhov, A. S. Kovalev, and A. T. Rakhimov, Physical Phenomena in Gas Discharge Plasmas (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  61. O. V. Krylov and B. R. Shub, Nonequilibrium Processes in Catalysis (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  62. V. P. Konovalov and E. E. Son, Zh. Tekh. Fiz. 50, 300 (1980) [Sov. Phys. Tech. Phys. 25, 178 (1980)].

    Google Scholar 

  63. V. G. Grudnitskii, N. A. Popov, and P. I. Sopin, Teplofiz. Vys. Temp. 25, 376 (1987).

    Google Scholar 

  64. P. I. Sopin, Teplofiz. Vys. Temp. 23, 235 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.A. Popov, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 5, pp. 482–496.

An erratum to this article can be found at http://dx.doi.org/10.1134/S1063780X09060117

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, N.A. Associative ionization reactions involving excited atoms in nitrogen plasma. Plasma Phys. Rep. 35, 436–449 (2009). https://doi.org/10.1134/S1063780X09050092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09050092

PACS numbers

Navigation