Skip to main content
Log in

Studies of penetration of the magnetic field into electrically imploded loads in the Angara-5-1 facility

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Bekhtev, V. D. Vikharev, S. V. Zakharov, et al., Zh. Éksp. Teor. Fiz. 95, 1653 (1989) [JETP 68, 955 (1989)].

    Google Scholar 

  2. R. B. Spielman, C. Deeney, G. A. Chandler, et al., Phys. Plasmas 5, 2105 (1998).

    Article  ADS  Google Scholar 

  3. J. H. Hammer, M. Tabak, S. C. Wilks, et al., Phys. Plasmas 6, 2129 (1999).

    Article  ADS  Google Scholar 

  4. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, et al., Phys. Rev. E 71, 046 406 (2005).

  5. T. J. Nash, C. Deeney, G. A. Chandler, et al., Phys. Plasmas 11, L65 (2004).

    Article  ADS  Google Scholar 

  6. V. V. Aleksandrov, A. V. Branitsky, G. S. Volkov, et al., Fiz. Plazmy 27, 99 (2001) [Plasma Phys. Rep. 27, 89 (2001)].

    Google Scholar 

  7. S. V. Lebedev, F. N. Beg, S. N. Bland, et al., Phys. Plasmas 8, 3734 (2001).

    Article  ADS  Google Scholar 

  8. M. A. Leontovich and S. M. Osovets, At. Énerg., No. 3, 81 (1956).

  9. V. V. Aleksandrov, A. V. Branitsky, E. V. Grabovski, et al., Fiz. Plazmy 25, 1060 (1999) [Plasma Phys. Rep. 25, 976 (1999)].

    Google Scholar 

  10. V. V. Aleksandrov, E. V. Grabovski, M. V. Zurin, et al., Zh. Éksp. Teor. Fiz. 126, 1317 (2004) [JETP 99, 1150 (2004)].

    Google Scholar 

  11. V. V. Alexandrov, I. N. Frolov, M. V. Fedulov, et al., IEEE Trans. Plasma Sci. 30, 559 (2002).

    Article  ADS  Google Scholar 

  12. G. G. Zukakishvili, K. N. Mitrofanov, E. V. Grabovski, et al., Fiz. Plazmy 31, 978 (2005) [Plasma Phys. Rep. 31, 908 (2005)].

    Google Scholar 

  13. P. E. Yu, B. V. Oliver, D. B. Sinars, et al., Phys. Plasmas 14, 022 705 (2007).

  14. S. C. Bott, S. V. Lebedev, D. J. Ampleford, et al., Phys. Rev. E 74, 046 403 (2006).

  15. S. N. Bland, D. J. Ampleford, S. C. Bott, et al., Rev. Sci. Instrum. 77, E315 (2006).

    Google Scholar 

  16. E. Grabovsky, G. Zukakishvili, K. Mitrofanov, et al., in Advanced Diagnostics for Magnetic and Inertial Fusion, Ed. by P. E. Stott, A. Wootton, G. Gorini, et al. (Kluwer, New York, 2002), p. 257.

    Google Scholar 

  17. E. V. Grabovski, G. G. Zukakishvili, K. N. Mitrofanov, et al., Troitsk Institute for Innovation and Fusion Research, Preprint No. 0091A (TsNIIATOMIN-FORM, Moscow, 2002).

    Google Scholar 

  18. E. V. Grabovski, G. G. Zukakishvili, K. N. Mitrofanov, et al., Fiz. Plazmy 32, 33 (2006) [Plasma Phys. Rep. 32, 32 (2006)].

    Google Scholar 

  19. K. M. Chandler, D. A. Hammer, D. B. Sinars, et al., IEEE Trans. Plasma Sci. 30, 577 (2002).

    Article  ADS  Google Scholar 

  20. E. V. Grabovskii, K. N. Mitrofanov, S. L. Nedoseev, et al., Contrib. Plasma Phys. 45, 553 (2005).

    Article  ADS  Google Scholar 

  21. E. Grabovsky, K. N. Mitrofanov, and I. Porofeev, in Advanced Diagnostics for Magnetic and Inertial Fusion, Ed. by P. E. Stott, A. Wootton, G. Gorini, et al. (Kluwer, New York, 2002), p. 419.

    Google Scholar 

  22. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, et al., Phys. Rev. Lett. 83, 4313 (1999).

    Article  ADS  Google Scholar 

  23. I. Yu. Porofeev, Cand. Sci. (Phys.-Mat.) Dissertation (Moscow, 2006).

  24. Z. A. Al’bikov, E. P. Velikhov, A. I. Veretennikov, et al., At. énerg. 68(1), 26 (1990).

    Google Scholar 

  25. A. V. Branitsky and G. M. Oleinik, Prib. Tekh. Éksp., No. 4, 58 (2000) [Instrum. Exp. Tech. 43, 486 (2000)].

  26. V. I. Derbilov, S. F. Medovshchikov, S. L. Nedoseev, et al., Preprint No. 5157/7 (Kurchatov Inst., Moscow, 1990).

    Google Scholar 

  27. S. F. Medovshchikov and S. L. Nedoseev, RF Patent No. 2075115 (February 1, 1993).

  28. I. K. Aivazov, V. D. Vikharev, G. S. Volkov, et al., Fiz. Plazmy 14, 197 (1988) [Sov. J. Plasma Phys. 14, 110 (1988)].

    Google Scholar 

  29. E. V. Grabovski, G. M. Oleinik, and I. Yu. Porofeev, Prib. Tekh. Éksp., No. 2, 116 (2006) [Instrum. Exp. Tech. 49, 253 (2006)].

  30. E. V. Grabovski, G. G. Zukakishvili, I. Yu. Porofeev, et al., Fiz. Plazmy 30, 33 (2004) [Plasma Phys. Rep. 30, 30 (2004)].

    Google Scholar 

  31. V. V. Aleksandrov, A. G. Alekseev, V. N. Amosov, et al., Fiz. Plazmy 29, 1114 (2003) [Plasma Phys. Rep. 29, 1034 (2003)].

    Google Scholar 

  32. G. S. Sarkisov, S. E. Rosenthal, K. W. Struve, et al., Phys. Plasmas 14, 112 701 (2007).

    Google Scholar 

  33. G. G. Zukakishvili, K. N. Mitrofanov, E. V. Grabovski, et al., Fiz. Plazmy 31, 707 (2005) [Plasma Phys. Rep. 31, 652 (2005)].

    Google Scholar 

  34. V. V. Aleksandrov, E. V. Grabovski, G. G. Zukakishvili, et al., Zh. éksp. Teor. Fiz. 124, 829 (2003) [JETP 97, 745 (2003)].

    Google Scholar 

  35. V. V. Aleksandrov, E. V. Grabovski, K. N. Mitrofanov, et al., Fiz. Plazmy 30, 615 (2004) [Plasma Phys. Rep. 30, 568 (2004)].

    Google Scholar 

  36. A. G. Alekseyev, V. N. Amosov, V. S. Khrunov, et al., in Diagnostics for Experimental Thermonuclear Fusion Reactors, Ed. by P. E. Stott, G. Gorini, and E. Sindoni (Plenum, New York, 1996), p. 365.

    Google Scholar 

  37. E. V. Grabovski, K. N. Mitrofanov, G. M. Oleinik, et al., Fiz. Plazmy 30, 139 (2004) [Plasma Phys. Rep. 30, 121 (2004)].

    Google Scholar 

  38. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Aleksandrov, V.A. Barsuk, E.V. Grabovski, A.N. Gritsuk, G.G. Zukakishvili, S.F. Medovshchikov, K.N. Mitrofanov, G.M. Oleinik, P.V. Sasorov, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 3, pp. 229–250.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, V.V., Barsuk, V.A., Grabovski, E.V. et al. Studies of penetration of the magnetic field into electrically imploded loads in the Angara-5-1 facility. Plasma Phys. Rep. 35, 200–221 (2009). https://doi.org/10.1134/S1063780X09030039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09030039

PACS numbers

Navigation