Skip to main content
Log in

Numerical investigations and analysis on the effects of geometrical parameters on the group velocity of transverse magnetic pump mode and free electron laser instability

  • Plasma Electronics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In this paper, we have numerically investigated the effects of various geometrical parameters of a backward wave oscillator, filled with a magnetized plasma of uniform density and driven by a mild relativistic solid electron beam, on the instability growth rate R 0 of a seeded free electron laser. On changing mean radius corrugation amplitude h and corrugation period z 0 of backward wave oscillator; the ponderomotive potential of space charge wave changes. This in turn, changes the coupling strength of TM mode with negative beam space charge mode and hence the growth rate of parametric instability of free electron laser. A dispersion relation is derived and numerically solved for various geometrical parameters of backward wave oscillator and beam profile. A relation for Γ is also derived and computed numerically. The instability growth scales directly to the square root of beam density and inversely as seven power of relativistic gamma factor γ0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Bogdankevich, M. V. Kuzelev, and A. A. Rukhadze, Usp. Fiz. Nauk 133, 3, (1981) [Sov. Phys. Usp. 24, 1 (1981)].

    Google Scholar 

  2. M. V. Kuzelev, A. A. Rukhadze, P. S. Strelkov, and A. G. Shkvarunets, Fiz. Plazmy 13, 1370 (1987) [Sov. J. Plasma Phys. 13, 793 (1987)].

    Google Scholar 

  3. P. Wen-Bin and C. Ya-Shen, Int. J. Electron. 65, 561 (1988).

    Google Scholar 

  4. V. K. Tripathi and C. S. Liu, IEEE Trans. Plasma Sci. 18, 466 (1990).

    Article  ADS  Google Scholar 

  5. Y. Carmel, K. Minami, L. Weiran, et al., IEEE Trans. Plasma Sci. 18, 497 (1990).

    Article  ADS  Google Scholar 

  6. V. A. Balakirev, V. I. Miroshnichenko, and Ya. B. Fainberg, Fiz. Plazmy 12, 983 (1986) [Sov. J. Plasma Phys. 12, 563 (1986)].

    Google Scholar 

  7. C. Joshi, T. Katsonleas, J. M. Dawson, et al., IEEE J. Quant. Electron. 23, 1571 (1987).

    Article  ADS  Google Scholar 

  8. V. L. Granatstein and P. Sprangle, IEEE Trans. Microwave Theory Tech. 25, 545 (1977).

    Article  ADS  Google Scholar 

  9. Y. Carmel, V. L. Granastein, and A. Grover, Phys. Rev. Lett. 51, 566 (1983).

    Article  ADS  Google Scholar 

  10. A. Sharma and V. K. Tripathi, Phys. Fluids 31, 3375 (1988).

    Article  ADS  Google Scholar 

  11. N. K. Jaiman and V. K. Tripathi, Radiophys. Quant. Electron. 37, 6 (1994).

    Article  Google Scholar 

  12. R. A. Kehs, Y. Carmel, V. L. Granatstein, and W. W. Destler, Phys. Rev. Lett. 68, 279 (1988).

    Article  ADS  Google Scholar 

  13. W. Minghong, L. Zheng, and Y. Ziqiang, Int. J. Infrared Millimeter Waves 24, 6 (2003).

    Google Scholar 

  14. N. K. Jaiman and V. K. Tripathi, Phys. Plasmas 4, 2687 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Sharma.

Additional information

Published in Russian in Fizika Plazmy, 2009, Vol. 35, No. 2, pp. 179–184.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, B.S., Jaiman, N.K. Numerical investigations and analysis on the effects of geometrical parameters on the group velocity of transverse magnetic pump mode and free electron laser instability. Plasma Phys. Rep. 35, 154–159 (2009). https://doi.org/10.1134/S1063780X0902007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X0902007X

PACS numbers

Navigation